The hsp70 gene CCAAT-binding factor mediates transcriptional activation by the adenovirus E1a protein

1992 ◽  
Vol 12 (6) ◽  
pp. 2599-2605 ◽  
Author(s):  
L S Lum ◽  
S Hsu ◽  
M Vaewhongs ◽  
B Wu

Expression of the human hsp70 gene is cell cycle regulated and is inducible by both serum and the adenovirus E1a protein (K. Milarski and R. Morimoto, Proc. Natl. Acad. Sci. USA 83:9517-9521, 1986; M. C. Simon, K. Kitchener, H.-T. Kao, E. Hickey, L. Weber, R. Voellmy, N. Heintz, and J. R. Nevins, Mol. Cell. Biol. 7:2884-2890, 1987; B. Wu, H. Hurst, N. Jones, and R. Morimoto, Mol. Cell. Biol. 6:2994-2999, 1986; B. Wu and R. Morimoto, Proc. Natl. Acad. Sci. USA 82:6070-6074, 1985). This regulated expression is predominantly controlled by the CCAAT element at position -70 relative to the transcriptional initiation site (G. Williams, T. McClanahan, and R. Morimoto, Mol. Cell. Biol. 9:2574-2587, 1989; B. Wu, H. Hurst, N. Jones, and R. Morimoto, Mol. Cell. Biol. 6:2994-2999, 1986). A corresponding CCAAT-binding factor (CBF) of 999 amino acids has recently been cloned and shown to stimulate transcription selectively from the hsp70 promoter in a CCAAT element-dependent manner (L. Lum, L. Sultzman, R. Kaufman, D. Linzer, and B. Wu, Mol. Cell. Biol. 10:6709-6717, 1990). We report here that the first 192 residues of CBF, when fused to the DNA-binding domain of the heterologous activator GAL-4, are necessary and sufficient to mediate E1a-dependent transcriptional activation. E1a and CBF exhibit complex formation in vitro, suggesting that an in vivo interaction between these proteins may be relevant to the well-characterized E1a-induced transcriptional activation of the hsp70 promoter.

1992 ◽  
Vol 12 (6) ◽  
pp. 2599-2605 ◽  
Author(s):  
L S Lum ◽  
S Hsu ◽  
M Vaewhongs ◽  
B Wu

Expression of the human hsp70 gene is cell cycle regulated and is inducible by both serum and the adenovirus E1a protein (K. Milarski and R. Morimoto, Proc. Natl. Acad. Sci. USA 83:9517-9521, 1986; M. C. Simon, K. Kitchener, H.-T. Kao, E. Hickey, L. Weber, R. Voellmy, N. Heintz, and J. R. Nevins, Mol. Cell. Biol. 7:2884-2890, 1987; B. Wu, H. Hurst, N. Jones, and R. Morimoto, Mol. Cell. Biol. 6:2994-2999, 1986; B. Wu and R. Morimoto, Proc. Natl. Acad. Sci. USA 82:6070-6074, 1985). This regulated expression is predominantly controlled by the CCAAT element at position -70 relative to the transcriptional initiation site (G. Williams, T. McClanahan, and R. Morimoto, Mol. Cell. Biol. 9:2574-2587, 1989; B. Wu, H. Hurst, N. Jones, and R. Morimoto, Mol. Cell. Biol. 6:2994-2999, 1986). A corresponding CCAAT-binding factor (CBF) of 999 amino acids has recently been cloned and shown to stimulate transcription selectively from the hsp70 promoter in a CCAAT element-dependent manner (L. Lum, L. Sultzman, R. Kaufman, D. Linzer, and B. Wu, Mol. Cell. Biol. 10:6709-6717, 1990). We report here that the first 192 residues of CBF, when fused to the DNA-binding domain of the heterologous activator GAL-4, are necessary and sufficient to mediate E1a-dependent transcriptional activation. E1a and CBF exhibit complex formation in vitro, suggesting that an in vivo interaction between these proteins may be relevant to the well-characterized E1a-induced transcriptional activation of the hsp70 promoter.


2000 ◽  
Vol 20 (4) ◽  
pp. 1140-1148 ◽  
Author(s):  
Dae-Won Kim ◽  
Brent H. Cochran

ABSTRACT We have previously shown that TFII-I enhances transcriptional activation of the c-fos promoter through interactions with upstream elements in a signal-dependent manner. Here we demonstrate that activated Ras and RhoA synergize with TFII-I for c-fospromoter activation, whereas dominant-negative Ras and RhoA inhibit these effects of TFII-I. The Mek1 inhibitor, PD98059 abrogates the enhancement of the c-fos promoter by TFII-I, indicating that TFII-I function is dependent on an active mitogen-activated protein (MAP) kinase pathway. Analysis of the TFII-I protein sequence revealed that TFII-I contains a consensus MAP kinase interaction domain (D box). Consistent with this, we have found that TFII-I forms an in vivo complex with extracellular signal-related kinase (ERK). Point mutations within the consensus MAP kinase binding motif of TFII-I inhibit its ability to bind ERK and its ability to enhance the c-fos promoter. Therefore, the D box of TFII-I is required for its activity on the c-fos promoter. Moreover, the interaction between TFII-I and ERK can be regulated. Serum stimulation enhances complex formation between TFII-I and ERK, and dominant-negative Ras abrogates this interaction. In addition, TFII-I can be phosphorylated in vitro by ERK and mutation of consensus MAP kinase substrate sites at serines 627 and 633 impairs the phosphorylation of TFII-I by ERK and its activity on the c-fos promoter. These results suggest that ERK regulates the activity of TFII-I by direct phosphorylation.


1990 ◽  
Vol 10 (8) ◽  
pp. 4256-4265 ◽  
Author(s):  
C J Brandl ◽  
K Struhl

In the gal-his3 hybrid promoter his3-GG1, the yeast upstream activator protein GCN4 stimulates transcription when bound at the position normally occupied by the TATA element. This TATA-independent activation by GCN4 requires two additional elements in the gal enhancer region that are distinct from those involved in normal galactose induction. Both additional elements appear to be functionally distinct from a classical TATA element because they cannot be replaced by the TFIID-binding sequence TATAAA. One of these elements, termed Q, is essential for GCN4-activated transcription and contains the sequence GTCAC CCG, which overlaps (but is distinct from) a GAL4 binding site. Surprisingly, relatively small increases in the distance between Q and the GCN4 binding site significantly reduce the level of transcription. The Q element specifically interacts with a yeast protein (Q-binding protein [QBP]) that may be equivalent to Y, a protein that binds at a sequence that forms a constraint to nucleosome positioning. Analysis of various deletion mutants indicates that the sequence requirements for binding by QBP in vitro are indistinguishable from those necessary for Q activity in vivo, strongly suggesting that QBP is required for the function of this TATA-independent promoter. These results support the view that transcriptional activation can occur by an alternative mechanism in which the TATA-binding factor TFIID either is not required or is not directly bound to DNA. In addition, they suggest a potential role of nucleosome positioning for the activity of a promoter.


2003 ◽  
Vol 23 (1) ◽  
pp. 140-149 ◽  
Author(s):  
Young-Hwa Goo ◽  
Young Chang Sohn ◽  
Dae-Hwan Kim ◽  
Seung-Whan Kim ◽  
Min-Jung Kang ◽  
...  

ABSTRACT Many transcription coactivators interact with nuclear receptors in a ligand- and C-terminal transactivation function (AF2)-dependent manner. These include activating signal cointegrator 2 (ASC-2), a recently isolated transcriptional coactivator molecule, which is amplified in human cancers and stimulates transactivation by nuclear receptors and numerous other transcription factors. In this report, we show that ASC-2 belongs to a steady-state complex of approximately 2 MDa (ASC-2 complex [ASCOM]) in HeLa nuclei. ASCOM contains retinoblastoma-binding protein RBQ-3, α/β-tubulins, and trithorax group proteins ALR-1, ALR-2, HALR, and ASH2. In particular, ALR-1/2 and HALR contain a highly conserved 130- to 140-amino-acid motif termed the SET domain, which was recently implicated in histone H3 lysine-specific methylation activities. Indeed, recombinant ALR-1, HALR, and immunopurified ASCOM exhibit very weak but specific H3-lysine 4 methylation activities in vitro, and transactivation by retinoic acid receptor appears to involve ligand-dependent recruitment of ASCOM and subsequent transient H3-lysine 4 methylation of the promoter region in vivo. Thus, ASCOM may represent a distinct coactivator complex of nuclear receptors. Further characterization of ASCOM will lead to a better understanding of how nuclear receptors and other transcription factors mediate transcriptional activation.


2000 ◽  
Vol 182 (4) ◽  
pp. 1118-1126 ◽  
Author(s):  
Niilo Kaldalu ◽  
Urve Toots ◽  
Victor de Lorenzo ◽  
Mart Ustav

ABSTRACT The alkylbenzoate degradation genes of Pseudomonas putida TOL plasmid are positively regulated by XylS, an AraC family protein, in a benzoate-dependent manner. In this study, we used deletion mutants and hybrid proteins to identify which parts of XylS are responsible for the DNA binding, transcriptional activation, and benzoate inducibility. We found that a 112-residue C-terminal fragment of XylS binds specifically to the Pm operator in vitro, protects this sequence from DNase I digestion identically to the wild-type (wt) protein, and activates the Pm promoter in vivo. When overexpressed, that C-terminal fragment could activate transcription as efficiently as wt XylS. All the truncations, which incorporated these 112 C-terminal residues, were able to activate transcription at least to some extent when overproduced. Intactness of the 210-residue N-terminal portion was found to be necessary for benzoate responsiveness of XylS. Deletions in the N-terminal and central regions seriously reduced the activity of XylS and caused the loss of effector control, whereas insertions into the putative interdomain region did not change the basic features of the XylS protein. Our results confirm that XylS consists of two parts which probably interact with each other. The C-terminal domain carries DNA-binding and transcriptional activation abilities, while the N-terminal region carries effector-binding and regulatory functions.


2003 ◽  
Vol 284 (4) ◽  
pp. F653-F662 ◽  
Author(s):  
Kameswaran Surendran ◽  
Theodore C. Simon

C-type natriuretic peptide (CNP) regulates salt excretion, vascular tone, and fibroblast proliferation and activation. CNP inhibits fibroblast activation in vitro and fibrosis in vivo, but endogenous CNP gene ( Nppc) expression during tissue fibrosis has not been reported. We determined that Nppc is induced in renal tubular epithelia and then in interstitial myofibroblasts after unilateral ureteral obstruction (UUO). Induction of Nppcoccurred in identical cell populations to those in which Wnt4 is induced after renal injury. In addition, Nppc was activated in Wnt4-expressing cells during nephrogenesis. Wnt signaling components β-catenin and T cell factor/lymphoid enhancer binding factor (TCF/LEF) specifically bound to cognate elements in the Nppc proximal promoter. Wnt-4, β-catenin, and LEF-1 activated an Nppc transgene in cultured cells, and transgene activation by Wnt-4 and LEF-1 was dependent on the presence of intact cognate elements. These findings suggest that Wnt-4 stimulates Nppc in a TCF/LEF-dependent manner after renal injury and thus may contribute to limiting renal fibrosis.


1999 ◽  
Vol 19 (11) ◽  
pp. 7347-7356 ◽  
Author(s):  
Cyril F. Bourgeois ◽  
Michel Popielarz ◽  
Georges Hildwein ◽  
James Stevenin

ABSTRACT The adenovirus E1A pre-mRNA undergoes alternative splicing whose modulation occurs during infection, through the use of three different 5′ splice sites and of one major or one minor 3′ splice site. Although this pre-mRNA has been extensively used as a model to compare the transactivation properties of SR proteins, no cis-acting element has been identified in the transcript sequence. Here we describe the identification and the characterization of a purine-rich splicing enhancer, located just upstream of the 12S 5′ splice site, which is formed from two contiguous 9-nucleotide (nt) purine motifs (Pu1 and Pu2). We demonstrate that this sequence is a bidirectional splicing enhancer (BSE) in vivo and in vitro, because it activates both the downstream 12S 5′ splice site through the Pu1 motif and the upstream 216-nt intervening sequence (IVS) 3′ splice site through both motifs. UV cross-linking and immunoprecipitation experiments indicate that the BSE interacts with several SR proteins specifically, among them 9G8 and ASF/SF2, which bind preferentially to the Pu1 and Pu2 motifs, respectively. Interestingly, we show by in vitro complementation assays that SR proteins have distinct transactivatory properties. In particular, 9G8, but not ASF/SF2 or SC35, is able to strongly activate the recognition of the 12S 5′ splice site in a BSE-dependent manner in wild-type E1A or in a heterologous context, whereas ASF/SF2 or SC35, but not 9G8, activates the upstream 216-nt IVS splicing. Thus, our results identify a novel exonic BSE and the SR proteins which are involved in its differential activity.


1990 ◽  
Vol 10 (8) ◽  
pp. 4256-4265
Author(s):  
C J Brandl ◽  
K Struhl

In the gal-his3 hybrid promoter his3-GG1, the yeast upstream activator protein GCN4 stimulates transcription when bound at the position normally occupied by the TATA element. This TATA-independent activation by GCN4 requires two additional elements in the gal enhancer region that are distinct from those involved in normal galactose induction. Both additional elements appear to be functionally distinct from a classical TATA element because they cannot be replaced by the TFIID-binding sequence TATAAA. One of these elements, termed Q, is essential for GCN4-activated transcription and contains the sequence GTCAC CCG, which overlaps (but is distinct from) a GAL4 binding site. Surprisingly, relatively small increases in the distance between Q and the GCN4 binding site significantly reduce the level of transcription. The Q element specifically interacts with a yeast protein (Q-binding protein [QBP]) that may be equivalent to Y, a protein that binds at a sequence that forms a constraint to nucleosome positioning. Analysis of various deletion mutants indicates that the sequence requirements for binding by QBP in vitro are indistinguishable from those necessary for Q activity in vivo, strongly suggesting that QBP is required for the function of this TATA-independent promoter. These results support the view that transcriptional activation can occur by an alternative mechanism in which the TATA-binding factor TFIID either is not required or is not directly bound to DNA. In addition, they suggest a potential role of nucleosome positioning for the activity of a promoter.


1990 ◽  
Vol 10 (12) ◽  
pp. 6709-6717
Author(s):  
L S Lum ◽  
L A Sultzman ◽  
R J Kaufman ◽  
D I Linzer ◽  
B J Wu

The basal promoter of the human hsp70 gene is predominantly controlled by a CCAAT element at position -70 relative to the transcriptional initiation site. We report the isolation of a novel cDNA clone encoding a 114-kDa polypeptide that binds to the CCAAT element of the hsp70 promoter. Expression of this CCAAT-binding factor (CBF) cDNA activated transcription from cotransfected hsp70 promoter-reporter gene constructs in a CCAAT-dependent manner. CCAAT-binding factor shows no homology to the previously identified human CCAAT transcription factor or rat CCAAT/enhancer-binding protein.


1995 ◽  
Vol 15 (11) ◽  
pp. 6283-6290 ◽  
Author(s):  
J V Geisberg ◽  
J L Chen ◽  
R P Ricciardi

Transcriptional activation by the adenovirus E1A 289R protein requires direct contacts with the TATA box-binding protein (TBP) and also displays a critical requirement for TBP-associated factors (TAFs) (T.G. Boyer and A. J. Berk, Genes Dev. 7:1810-1823, 1993; J. V. Geisberg, W. S. Lee, A. J. Berk, and R. P. Ricciardi, Proc. Natl. Acad. Sci. USA 91:2488-2492, 1994; W. S. Lee, C. C. Kao, G. O. Bryant, X. Liu, and A. J. Berk, Cell 67:365-376, 1991; and Q. Zhou, P. M. Lieberman, T. G. Boyer, and A. J. Berk, Genes Dev. 6:1964-1974, 1992). In this report, we demonstrate that the activation domain of E1A (CR3) specifically binds to two TAFs, human TAFII250 (hTAFII250) and Drosophila TAFII110 (dTAFII110). These interactions can take place both in vivo and in vitro and require the carboxy-terminal region of CR3; the zinc finger region of CR3, which binds TBP, is not needed to bind these TAFs. We mapped the E1A-binding sites on hTAFII250 to an internal region that contains a number of structural motifs, including an HMG box, a bromodomain, and direct repeats. This represents the first demonstration that hTAFII250 may serve as a target of a transcriptional activator. We also mapped the E1A binding on dTAFII110 to its C-terminal region. This is of significance since, by contrast, Sp1-mediated activation requires binding to the N-terminal domain of dTAFII110. Thus, distinct surfaces of dTAFII110 can serve as target sites for different activators. Our results indicate that E1A may activate transcription, in part, through direct contacts of the CR3 subdomains with selected components of the TFIID complex.


Sign in / Sign up

Export Citation Format

Share Document