E1a transactivation of the human HSP70 promoter is mediated through the basal transcriptional complex

1989 ◽  
Vol 9 (6) ◽  
pp. 2574-2587
Author(s):  
G T Williams ◽  
T K McClanahan ◽  
R I Morimoto

We have examined the promoter sequence requirements for E1a transactivation of the human HSP70 gene by using a transient cotransfection assay. A 5' deletion study has defined a basal transcription unit extending to -74 relative to the transcription initiation site which was fully E1a responsive. Further deletion, abolishing a CCAAT element at -67, drastically reduced basal and E1a-induced expression. A linker-scanner analysis has identified four functional elements within the basal transcription unit which may interact with CTF, SP1, TFIID, and an ATF/AP1-like factor. Sequences between -100 and -188 can partially compensate for mutations in these elements. No mutation specifically abolished E1a inducibility. Any reduction in absolute E1a-induced levels was accompanied by a corresponding reduction in absolute basal levels, thereby maintaining a constant relative fold induction. We conclude that E1a transactivation of the human HSP70 promoter does not require any single basal transcription element. We also examined an HSP70 promoter fragment, containing the CCAAT element at -67 and the purine-rich element at -54, out of its normal context by fusing it upstream of a transcriptionally inactive herpes simplex virus thymidine kinase deletion construct containing only the TATA box. The resulting chimeric promoter was fully E1a responsive. Mutagenesis of this promoter fusion demonstrated that the CCAAT element was essential for detectable basal and E1a-induced expression. Mutations in the purine-rich element resulted in an approximately 10-fold elevation in basal levels and rendered the promoter nonresponsive to E1a.

1989 ◽  
Vol 9 (6) ◽  
pp. 2574-2587 ◽  
Author(s):  
G T Williams ◽  
T K McClanahan ◽  
R I Morimoto

We have examined the promoter sequence requirements for E1a transactivation of the human HSP70 gene by using a transient cotransfection assay. A 5' deletion study has defined a basal transcription unit extending to -74 relative to the transcription initiation site which was fully E1a responsive. Further deletion, abolishing a CCAAT element at -67, drastically reduced basal and E1a-induced expression. A linker-scanner analysis has identified four functional elements within the basal transcription unit which may interact with CTF, SP1, TFIID, and an ATF/AP1-like factor. Sequences between -100 and -188 can partially compensate for mutations in these elements. No mutation specifically abolished E1a inducibility. Any reduction in absolute E1a-induced levels was accompanied by a corresponding reduction in absolute basal levels, thereby maintaining a constant relative fold induction. We conclude that E1a transactivation of the human HSP70 promoter does not require any single basal transcription element. We also examined an HSP70 promoter fragment, containing the CCAAT element at -67 and the purine-rich element at -54, out of its normal context by fusing it upstream of a transcriptionally inactive herpes simplex virus thymidine kinase deletion construct containing only the TATA box. The resulting chimeric promoter was fully E1a responsive. Mutagenesis of this promoter fusion demonstrated that the CCAAT element was essential for detectable basal and E1a-induced expression. Mutations in the purine-rich element resulted in an approximately 10-fold elevation in basal levels and rendered the promoter nonresponsive to E1a.


1998 ◽  
Vol 44 (12) ◽  
pp. 1186-1192
Author(s):  
Guy Daxhelet ◽  
Philippe Gilot ◽  
Etienne Nyssen ◽  
Philippe Hoet

pGR71, a composite of plasmids pUB110 and pBR322, replicates in Escherichia coli and in Bacillus subtilis. It carries the chloramphenicol resistance gene (cat) from Tn9, which is not transcribed in either host by lack of a promoter. The cat gene is preceded by a Shine-Dalgarno sequence functional in E. coli but not in B. subtilis. Deleted pGR71 plasmids were obtained in B. subtilis when cloning foreign viral DNA upstream of this cat sequence, as well as by BAL31 exonuclease deletions extending upstream from the cat into the pUB110 moiety. These mutant plasmids expressed chloramphenicol acetyltransferase (CAT), conferring on B. subtilis resistance to high chloramphenicol concentrations. CAT expression peaked at the early postexponential phase of B. subtilis growth. The transcription initiation site of cat, determined by primer extension, was located downstream of a putative promoter sequence within the pUB110 moiety. N-terminal amino acid sequencing showed that native CAT was produced by these mutant plasmids. The cat ribosome-binding site, functional in E. coli, was repositioned within the pUB110 moiety and had consequently an extended homology with B. subtilis 16S rRNA, explaining the production of native enzyme.Key words: chloramphenicol acetyltransferase, Bacillus subtilis, postexponential gene expression, plasmid pUB110, ribosome-binding site, transcriptional promoter.


1984 ◽  
Vol 4 (5) ◽  
pp. 875-882
Author(s):  
M J Imperiale ◽  
J R Nevins

Utilizing deletion mutants of a plasmid containing the adenovirus E2 gene, an E1A-inducible transcription unit, we determined the promoter sequences required for full expression in transient transfection assays. Wild-type expression was obtained from plasmids containing only 79 nucleotides of upstream sequence relative to the transcription initiation site. Removal of an additional nine nucleotides lowered expression 10-fold, and deletion to -59 resulted in near total loss of transcription. Wild-type levels of expression were restored to a -28 deletion mutant by insertion of the sequence from -21 to -262 from the wild-type promoter at the -28 position, in either orientation, even though when inserted in the opposite orientation the relevant sequences were ca. 270 nucleotides upstream from their normal position. Finally, this sequence could be placed at a distance of 4,000 nucleotides from the E2 cap site and still retain near total function. Thus, the E2 promoter element can function independent of orientation and position, properties characteristic of enhancer elements.


2020 ◽  
Vol 117 (7) ◽  
pp. 3560-3567 ◽  
Author(s):  
Daniel J. Luciano ◽  
Joel G. Belasco

Stresses that increase the cellular concentration of dinucleoside tetraphosphates (Np4Ns) have recently been shown to impact RNA degradation by inducing nucleoside tetraphosphate (Np4) capping of bacterial transcripts. However, neither the mechanism by which such caps are acquired nor the function of Np4Ns in bacteria is known. Here we report that promoter sequence changes upstream of the site of transcription initiation similarly affect both the efficiency with which Escherichia coli RNA polymerase incorporates dinucleoside polyphosphates at the 5′ end of nascent transcripts in vitro and the percentage of transcripts that are Np4-capped in E. coli, clear evidence for Np4 cap acquisition by Np4N incorporation during transcription initiation in bacterial cells. E. coli RNA polymerase initiates transcription more efficiently with Np4As than with ATP, particularly when the coding strand nucleotide that immediately precedes the initiation site is a purine. Together, these findings indicate that Np4Ns function in bacteria as precursors to Np4 caps and that RNA polymerase has evolved a predilection for synthesizing capped RNA whenever such precursors are abundant.


1998 ◽  
Vol 330 (3) ◽  
pp. 1223-1227 ◽  
Author(s):  
Yoichi YAMADA ◽  
Naoki ITANO ◽  
Masahiro ZAKO ◽  
Mamoru YOSHIDA ◽  
Petros LENAS ◽  
...  

The structure and organization of mouse hyaluronan synthase 1 gene, HAS1 were determined by direct sequencing of λ phage clones carrying the entire gene and by application of the long and accurate (LA)-PCR method to amplify regions encompassing the exon-intron boundaries and all of the exons. This gene spans about 11 kb of genomic DNA and consists of 5 exons and 4 introns. A similarity in the exon-intron organization was found between the genes of mouse HAS1 and Xenopus laevis DG42 which was recently identified as Xenopus hyaluronan synthase. The transcription initiation site was determined by rapid amplification of the cDNA ends (5ʹ-RACE). Position +1 is located 55 nucleotides upstream of the ATG initiation codon. The promoter region of the HAS1 gene has no typical TATA box, but contains a CCAAT box located 190 nucleotides upstream of the transcription initiation site. Further analysis of 1.4 kb of the 5ʹ flanking region revealed several potential binding motifs for transcription factors. This information about the gene structure may be useful for further studies on the promoter activity.


2000 ◽  
Vol 182 (17) ◽  
pp. 4738-4743 ◽  
Author(s):  
Brian J. Koebmann ◽  
Dan Nilsson ◽  
Oscar P. Kuipers ◽  
Peter R. Jensen

ABSTRACT The eight genes which encode the (F1Fo) H+-ATPase in Lactococcus lactis subsp.cremoris MG1363 were cloned and sequenced. The genes were organized in an operon with the gene order atpEBFHAGDC; i.e., the order of atpE and atpB is reversed with respect to the more typical bacterial organization. The deduced amino acid sequences of the corresponding H+-ATPase subunits showed significant homology with the subunits from other organisms. Results of Northern blot analysis showed a transcript at approximately 7 kb, which corresponds to the size of theatp operon. The transcription initiation site was mapped by primer extension and coincided with a standard promoter sequence. In order to analyze the importance of the H+-ATPase forL. lactis physiology, a mutant strain was constructed in which the original atp promoter on the chromosome was replaced with an inducible nisin promoter. When grown on GM17 plates the resulting strain was completely dependent on the presence of nisin for growth. These data demonstrate that the H+-ATPase is essential for growth of L. lactis under these conditions.


2010 ◽  
Vol 84 (21) ◽  
pp. 11470-11478 ◽  
Author(s):  
Baoling Ying ◽  
Ann E. Tollefson ◽  
William S. M. Wold

ABSTRACT We previously identified an adenovirus (Ad) protein named U exon protein (UXP) encoded by a leftward-strand (l-strand) transcription unit. Here we identify and characterize the UXP promoter. Primer extension and RNase protection assays mapped the transcription initiation site at 32 nucleotides upstream of the UXP gene initiation codon. A series of viral mutants with mutations at two putative inverted CCAAT (I-CCAAT) boxes and two E2F sites were generated. With mutants lacking the proximal I-CCAAT box, the UXP mRNA level decreased significantly to 30% of the Ad type 5 (Ad5) mRNA level as measured by quantitative reverse transcription-PCR. Decreased UXP was also observed by immunoblotting and immunofluorescence. UXP mRNA and protein levels were similar to those of Ad5 for mutants lacking the distal I-CCAAT box or both putative E2F sites. Ad DNA levels were similar in mutant- and wild-type Ad5-infected cells during the late stage of infection, strongly suggesting that the decreased UXP mRNA and protein from mutants lacking the proximal I-CCAAT box was due to decreased promoter activity. Electrophoretic mobility shift assays (EMSA) indicated that a cellular factor binds specifically to the proximal I-CCAAT box of the UXP promoter. An in vitro luciferase reporter assay demonstrated that basal promoter activity lies between bp −158 and +30 of the transcription initiation site. No E1A-mediated promoter transactivation was observed in 293 cells compared with A549 cells. Thus, we propose that there is a previously unidentified Ad5 promoter that drives expression of the UXP transcription unit. This promoter is embedded within the gene for fiber, and it contains a proximal I-CCAAT box critical for UXP mRNA transcription.


2021 ◽  
Author(s):  
Li Ziyun ◽  
Li Biao ◽  
Zhao yichen ◽  
Zhao Degang

Abstract The lignans of Eucommia ulmoides have been extensively studied and shown to have a dual mechanism of regulating blood pressure. Studies have shown that DIR1 is a key gene in the biosynthetic pathway of lignans in Eucommia ulmoides Oliv. In this study, a 2000 bp upstream promoter sequence was cloned, and part of the sequence (1495 bp) and its 5'-end truncated segment were constructed into the pCAMBIA1391Z expression plasmid upstream of ß-glucuronidase (GUS). Agrobacterium-mediated genetic transformation produced stable transgenic tobacco lines. The results showed that although both full-length and truncated promoters could initiate GUS expression, their levels were influenced by the degree of deletion at the 5' end. GUS histochemical staining showed that the core promoter region was located in the region containing the transcription initiation site (TIS) within 212 bp. In addition, the DIR1 promoter responded to environmental and hormonal stressors, such as jasmonic acid (MeJA), abscisic acid (ABA), D-mannitol (drought mimic), and high concentrations of NaCl. In transgenic tobacco seedlings, MeJA, D-mannitol, and ABA could activate the DIR1 promoter, whereas high concentrations of NaCl could inhibit it. In E. ulmoides Oliv seedlings, MeJA, NaCl, and D-mannitol activated the DIR1 promoter, whereas ABA had an inhibitory effect. In summary, our findings provide a theoretical basis for the use of the DIR1 promoter in plant genetic engineering, indicating its potential. Our study also presents novel insights for lignan biosynthesis and sheds light on the mechanisms of E. ulmoides Oliv in response to stress.


1984 ◽  
Vol 4 (5) ◽  
pp. 875-882 ◽  
Author(s):  
M J Imperiale ◽  
J R Nevins

Utilizing deletion mutants of a plasmid containing the adenovirus E2 gene, an E1A-inducible transcription unit, we determined the promoter sequences required for full expression in transient transfection assays. Wild-type expression was obtained from plasmids containing only 79 nucleotides of upstream sequence relative to the transcription initiation site. Removal of an additional nine nucleotides lowered expression 10-fold, and deletion to -59 resulted in near total loss of transcription. Wild-type levels of expression were restored to a -28 deletion mutant by insertion of the sequence from -21 to -262 from the wild-type promoter at the -28 position, in either orientation, even though when inserted in the opposite orientation the relevant sequences were ca. 270 nucleotides upstream from their normal position. Finally, this sequence could be placed at a distance of 4,000 nucleotides from the E2 cap site and still retain near total function. Thus, the E2 promoter element can function independent of orientation and position, properties characteristic of enhancer elements.


Sign in / Sign up

Export Citation Format

Share Document