scholarly journals Cooperativity of sequence elements mediates tissue specificity of the rat insulin II gene.

1990 ◽  
Vol 10 (4) ◽  
pp. 1784-1788 ◽  
Author(s):  
Y P Hwung ◽  
Y Z Gu ◽  
M J Tsai

The 5'-flanking region of the rat insulin II gene (-448 to +50) is sufficient for tissue-specific expression. To further determine the tissue-specific cis-acting element(s), important sequences defined by linker-scanning mutagenesis were placed upstream of a heterologous promoter and transfected into insulin-producing and -nonproducing cells. Rat insulin promoter element 3 (RIPE3), which spans from -125 to -86, was shown to confer beta-cell-specific expression in either orientation. However, two subregions of RIPE3, RIPE3a and RIPE3b (defined by linker-scanning mutations), displayed only marginal activities. These results suggest that the two subregions cooperate to confer tissue specificity, presumably via their cognate binding factors.

1990 ◽  
Vol 10 (4) ◽  
pp. 1784-1788
Author(s):  
Y P Hwung ◽  
Y Z Gu ◽  
M J Tsai

The 5'-flanking region of the rat insulin II gene (-448 to +50) is sufficient for tissue-specific expression. To further determine the tissue-specific cis-acting element(s), important sequences defined by linker-scanning mutagenesis were placed upstream of a heterologous promoter and transfected into insulin-producing and -nonproducing cells. Rat insulin promoter element 3 (RIPE3), which spans from -125 to -86, was shown to confer beta-cell-specific expression in either orientation. However, two subregions of RIPE3, RIPE3a and RIPE3b (defined by linker-scanning mutations), displayed only marginal activities. These results suggest that the two subregions cooperate to confer tissue specificity, presumably via their cognate binding factors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ami Shah ◽  
Madison Ratkowski ◽  
Alessandro Rosa ◽  
Paul Feinstein ◽  
Thomas Bozza

AbstractOlfactory sensory neurons express a large family of odorant receptors (ORs) and a small family of trace amine-associated receptors (TAARs). While both families are subject to so-called singular expression (expression of one allele of one gene), the mechanisms underlying TAAR gene choice remain obscure. Here, we report the identification of two conserved sequence elements in the mouse TAAR cluster (T-elements) that are required for TAAR gene expression. We observed that cell-type-specific expression of a TAAR-derived transgene required either T-element. Moreover, deleting either element reduced or abolished expression of a subset of TAAR genes, while deleting both elements abolished olfactory expression of all TAARs in cis with the mutation. The T-elements exhibit several features of known OR enhancers but also contain highly conserved, unique sequence motifs. Our data demonstrate that TAAR gene expression requires two cooperative cis-acting enhancers and suggest that ORs and TAARs share similar mechanisms of singular expression.


1988 ◽  
Vol 263 (34) ◽  
pp. 18530-18536 ◽  
Author(s):  
K Higuchi ◽  
S W Law ◽  
J M Hoeg ◽  
U K Schumacher ◽  
N Meglin ◽  
...  

1992 ◽  
Vol 286 (1) ◽  
pp. 179-185 ◽  
Author(s):  
C P Simkevich ◽  
J P Thompson ◽  
H Poppleton ◽  
R Raghow

The transcriptional activity of plasmid pCOL-KT, in which human pro alpha 1 (I) collagen gene upstream sequences up to -804 and most of the first intron (+474 to +1440) drive expression of the chloramphenicol acetyltransferase (CAT) gene [Thompson, Simkevich, Holness, Kang & Raghow (1991) J. Biol. Chem. 266, 2549-2556], was tested in a number of mesenchymal and non-mesenchymal cells. We observed that pCOL-KT was readily expressed in fibroblasts of human (IMR-90 and HFL-1), murine (NIH 3T3) and avian (SL-29) origin and in a human rhabdomyosarcoma cell line (A204), but failed to be expressed in human erythroleukaemia (K562) and rat pheochromocytoma (PC12) cells, indicating that the regulatory elements required for appropriate tissue-specific expression of the human pro alpha 1 (I) collagen gene were present in pCOL-KT. To delineate the nature of cis-acting sequences which determine the tissue specificity of pro alpha 1 (I) collagen gene expression, functional consequences of deletions in the promoter and first intron of pCOL-KT were tested in various cell types by transient expression assays. Cis elements in the promoter-proximal and intronic sequences displayed either a positive or a negative influence depending on the cell type. Thus deletion of fragments using EcoRV (nt -625 to -442 deleted), XbaI (-804 to -331) or SstII (+670 to +1440) resulted in 2-10-fold decreased expression in A204 and HFL-1 cells. The negative influences of deletions in the promoter-proximal sequences was apparently considerably relieved by deleting sequences in the first intron, and the constructs containing the EcoRV/SstII or XbaI/SstII double deletions were expressed to a much greater extent than either of the single deletion constructs. In contrast, the XbaI* deletion (nt -804 to -609), either alone or in combination with the intronic deletion, resulted in very high expression in all cells regardless of their collagen phenotype; the XbaI*/(-SstII) construct, which contained the intronic SstII fragment (+670 to +1440) in the reverse orientation, was not expressed in either mesenchymal or nonmesenchymal cells. Based on these results, we conclude that orientation-dependent interactions between negatively acting 5′-upstream sequences and the first intron determine the mesenchymal cell specificity of human pro alpha 1 (I) collagen gene transcription.


1989 ◽  
Vol 9 (10) ◽  
pp. 4204-4212
Author(s):  
M H Feuerman ◽  
R Godbout ◽  
R S Ingram ◽  
S M Tilghman

Previous work identified four upstream cis-acting elements required for tissue-specific expression of the alpha-fetoprotein (AFP) gene: three distal enhancers and a promoter. To further define the role of the promoter in regulating AFP gene expression, segments of the region were tested for the ability to direct transcription of a reporter gene in transient expression assay. Experiments showed that the region within 250 base pairs of the start of transcription was sufficient to confer liver-specific transcription. DNase I footprinting and band shift assays indicated that the region between -130 and -100 was recognized by two factors, one of which was highly sequence specific and found only in hepatoma cells. Competition assays suggested that the liver-specific binding activity was HNF-1, previously identified by its binding to other liver-specific promoters. Mutation of the HNF-1 recognition site at -120 resulted in a significant reduction in transcription in transfection assays, suggesting a biological role for HNF-1 in the regulation of AFP expression.


1994 ◽  
Vol 14 (2) ◽  
pp. 871-879
Author(s):  
A Sharma ◽  
R Stein

The insulin gene is expressed exclusively in pancreatic islet beta cells. The principal regulator of insulin gene transcription in the islet is the concentration of circulating glucose. Previous studies have demonstrated that transcription is regulated by the binding of trans-acting factors to specific cis-acting sequences within the 5'-flanking region of the insulin gene. To identify the cis-acting control elements within the rat insulin II gene that are responsible for regulating glucose-stimulated expression in the beta cell, we analyzed the effect of glucose on the in vivo expression of a series of transfected 5'-flanking deletion mutant constructs. We demonstrate that glucose-induced transcription of the rat insulin II gene is mediated by sequences located between -126 and -91 bp relative to the transcription start site. This region contains two cis-acting elements that are essential for directing pancreatic beta-cell-type-specific expression of the rat insulin II gene, the insulin control element (ICE; -100 to -91 bp) and RIPE3b1 (-115 to -107 bp). The gel mobility shift assay was used to determine whether the formation of the ICE- and RIPE3b1-specific factor-DNA element complexes were affected in glucose-treated beta-cell extracts. We found that RIPE3b1 binding activity was selectively induced by about eightfold. In contrast, binding to other insulin cis-acting element sequences like the ICE and RIPE3a2 (-108 to -99 bp) were unaffected by these conditions. The RIPE3b1 binding complex was shown to be distinct from the glucose-inducible factor that binds to an element located between -227 to -206 bp of the human and rat insulin I genes (D. Melloul, Y. Ben-Neriah, and E. Cerasi, Proc. Natl. Acad. Sci. USA 90:3865-3869, 1993). We have also shown that mannose, a sugar that can be metabolized by the beta cell, mimics the effects of glucose in the in vivo transfection assays and the in vitro RIPE3b1 binding assays. These results suggested that the RIPE3b1 transcription factor is a primary regulator of glucose-mediated transcription of the insulin gene. However, we found that mutations in either the ICE or the RIPE3b1 element reduced glucose-responsive expression from transfected 5'-flanking rat insulin II gene constructs. We therefore conclude that glucose-regulated transcription of the insulin gene is mediated by cis-acting elements required for beta-cell-type-specific expression.


1987 ◽  
Vol 7 (7) ◽  
pp. 2425-2434 ◽  
Author(s):  
J M Heard ◽  
P Herbomel ◽  
M O Ott ◽  
A Mottura-Rollier ◽  
M Weiss ◽  
...  

The 150-base-pairs region located upstream of the transcriptional start site of the rat albumin gene contains all of the critical sequences necessary for this gene's tissue-specific expression in rat hepatoma cells. In transient expression assays using an improved CAT system or direct mRNA analysis we were able to detect a faithful transcription from the albumin promoter in albumin-negative dedifferentiated H5 hepatoma cells which was 250-fold weaker than in differentiated H4II hepatoma cells producing albumin. This strong tissue specificity could be completely overcome through the cis action of a non-tissue-specific enhancer. Two upstream regions from nucleotides -151 to -119 and from -118 to -94, were required for efficient transcription in H4II cells. Each region contained a sequence motif highly conserved among different species. The effect of the -151/-119 region was strictly tissue specific, while the -118/-94 region was also involved in the low level of transcription observed in H5 cells. Finally, sequences between the CCAAT box and the TATA box also contributed to the overall tissue specificity of rat albumin gene transcription.


1997 ◽  
Vol 46 (1-2) ◽  
pp. 243-255 ◽  
Author(s):  
Agnès Viale ◽  
Yao Zhixing ◽  
Christophe Breton ◽  
Florence Pedeutour ◽  
Antoine Coquerel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document