scholarly journals Positive control of sporulation-specific genes by the IME1 and IME2 products in Saccharomyces cerevisiae.

1990 ◽  
Vol 10 (5) ◽  
pp. 2104-2110 ◽  
Author(s):  
A P Mitchell ◽  
S E Driscoll ◽  
H E Smith

In the yeast Saccharomyces cerevisiae, meiosis and spore formation require the induction of sporulation-specific genes. Two genes are thought to activate the sporulation program: IME1 and IME2 (inducer of meiosis). Both genes are induced upon entry into meiosis, and IME1 is required for IME2 expression. We report here that IME1 is essential for expression of four sporulation-specific genes. In contrast, IME2 is not absolutely essential for expression of the sporulation-specific genes, but contributes to their rapid induction. Expression of IME2 from a heterologous promoter permits the expression of these sporulation-specific genes, meiotic recombination, and spore formation in the absence of IME1. We propose that the IME1 and IME2 products can each activate sporulation-specific genes independently. In addition, the IME1 product stimulates sporulation-specific gene expression indirectly through activation of IME2 expression.

1990 ◽  
Vol 10 (5) ◽  
pp. 2104-2110
Author(s):  
A P Mitchell ◽  
S E Driscoll ◽  
H E Smith

In the yeast Saccharomyces cerevisiae, meiosis and spore formation require the induction of sporulation-specific genes. Two genes are thought to activate the sporulation program: IME1 and IME2 (inducer of meiosis). Both genes are induced upon entry into meiosis, and IME1 is required for IME2 expression. We report here that IME1 is essential for expression of four sporulation-specific genes. In contrast, IME2 is not absolutely essential for expression of the sporulation-specific genes, but contributes to their rapid induction. Expression of IME2 from a heterologous promoter permits the expression of these sporulation-specific genes, meiotic recombination, and spore formation in the absence of IME1. We propose that the IME1 and IME2 products can each activate sporulation-specific genes independently. In addition, the IME1 product stimulates sporulation-specific gene expression indirectly through activation of IME2 expression.


1990 ◽  
Vol 10 (12) ◽  
pp. 6103-6113 ◽  
Author(s):  
H E Smith ◽  
S S Su ◽  
L Neigeborn ◽  
S E Driscoll ◽  
A P Mitchell

Two signals are required for meiosis and spore formation in the yeast Saccharomyces cerevisiae: starvation and the MAT products a1 and alpha 2, which determine the a/alpha cell type. These signals lead to increased expression of the IME1 (inducer of meiosis) gene, which is required for sporulation and sporulation-specific gene expression. We report here the sequence of the IME1 gene and the consequences of IME1 expression from the GAL1 promoter. The deduced IME1 product is a 360-amino-acid protein with a tyrosine-rich C-terminal region. Expression of PGAL1-IME1 in vegetative a/alpha cells led to moderate accumulation of four early sporulation-specific transcripts (IME2, SPO11, SPO13, and HOP1); the transcripts accumulated 3- to 10-fold more after starvation. Two sporulation-specific transcripts normally expressed later (SPS1 and SPS2) did not accumulate until PGAL1-IME1 strains were starved, and the intact IME1 gene was not activated by PGAL1-IME1 expression. In a or alpha cells, which lack alpha 2 or a1, expression of PGAL1-IME1 led to the same pattern of IME2 and SPO13 expression as in a/alpha cells, as measured with ime2::lacZ and spo13::lacZ fusions. Thus, in wild-type strains, the increased expression of IME1 in starved a/alpha cells can account entirely for cell type control, but only partially for nutritional control, of early sporulation-specific gene expression. PGAL1-IME1 expression did not cause growing cells to sporulate but permitted efficient sporulation of amino acid-limited cells, which otherwise sporulated poorly. We suggest that IME1 acts primarily as a positive regulator of early sporulation-specific genes and that growth arrest is an independent prerequisite for execution of the sporulation program.


1990 ◽  
Vol 10 (12) ◽  
pp. 6103-6113
Author(s):  
H E Smith ◽  
S S Su ◽  
L Neigeborn ◽  
S E Driscoll ◽  
A P Mitchell

Two signals are required for meiosis and spore formation in the yeast Saccharomyces cerevisiae: starvation and the MAT products a1 and alpha 2, which determine the a/alpha cell type. These signals lead to increased expression of the IME1 (inducer of meiosis) gene, which is required for sporulation and sporulation-specific gene expression. We report here the sequence of the IME1 gene and the consequences of IME1 expression from the GAL1 promoter. The deduced IME1 product is a 360-amino-acid protein with a tyrosine-rich C-terminal region. Expression of PGAL1-IME1 in vegetative a/alpha cells led to moderate accumulation of four early sporulation-specific transcripts (IME2, SPO11, SPO13, and HOP1); the transcripts accumulated 3- to 10-fold more after starvation. Two sporulation-specific transcripts normally expressed later (SPS1 and SPS2) did not accumulate until PGAL1-IME1 strains were starved, and the intact IME1 gene was not activated by PGAL1-IME1 expression. In a or alpha cells, which lack alpha 2 or a1, expression of PGAL1-IME1 led to the same pattern of IME2 and SPO13 expression as in a/alpha cells, as measured with ime2::lacZ and spo13::lacZ fusions. Thus, in wild-type strains, the increased expression of IME1 in starved a/alpha cells can account entirely for cell type control, but only partially for nutritional control, of early sporulation-specific gene expression. PGAL1-IME1 expression did not cause growing cells to sporulate but permitted efficient sporulation of amino acid-limited cells, which otherwise sporulated poorly. We suggest that IME1 acts primarily as a positive regulator of early sporulation-specific genes and that growth arrest is an independent prerequisite for execution of the sporulation program.


1999 ◽  
Vol 18 (22) ◽  
pp. 6448-6454 ◽  
Author(s):  
Jianxin Xie ◽  
Michael Pierce ◽  
Valérie Gailus-Durner ◽  
Marisa Wagner ◽  
Edward Winter ◽  
...  

1998 ◽  
Vol 18 (10) ◽  
pp. 5750-5761 ◽  
Author(s):  
Shelley R. Hepworth ◽  
Helena Friesen ◽  
Jacqueline Segall

ABSTRACT Distinct classes of sporulation-specific genes are sequentially expressed during the process of spore formation in Saccharomyces cerevisiae. The transition from expression of early meiotic genes to expression of middle sporulation-specific genes occurs at about the time that cells exit from pachytene and form the meiosis I spindle. To identify genes encoding potential regulators of middle sporulation-specific gene expression, we screened for mutants that expressed early meiotic genes but failed to express middle sporulation-specific genes. We identified mutant alleles ofRPD3, SIN3, and NDT80 in this screen. Rpd3p, a histone deacetylase, and Sin3p are global modulators of gene expression. Ndt80p promotes entry into the meiotic divisions. We found that entry into the meiotic divisions was not required for activation of middle sporulation genes; these genes were efficiently expressed in a clb1 clb3 clb4 strain, which fails to enter the meiotic divisions due to reduced Clb-dependent activation of Cdc28p kinase. In contrast, middle sporulation genes were not expressed in a dmc1 strain, which fails to enter the meiotic divisions because a defect in meiotic recombination leads to aRAD17-dependent checkpoint arrest. Expression of middle sporulation genes, as well as entry into the meiotic divisions, was restored to a dmc1 strain by mutation of RAD17. Our studies also revealed that NDT80 was a temporally distinct, pre-middle sporulation gene and that its expression was reduced, but not abolished, on mutation of DMC1,RPD3, SIN3, or NDT80 itself. In summary, our data indicate that Ndt80p is required for expression of middle sporulation genes and that the activity of Ndt80p is controlled by the meiotic recombination checkpoint. Thus, middle genes are expressed only on completion of meiotic recombination and subsequent generation of an active form of Ndt80p.


2021 ◽  
pp. mbc.E20-12-0757
Author(s):  
Corrina G. Robertson ◽  
Manuella R. Clark-Cotton ◽  
Daniel J. Lew

Haploid cells of the budding yeast Saccharomyces cerevisiae communicate using secreted pheromones and mate to form diploid zygotes. Mating is monogamous, resulting in the fusion of precisely one cell of each mating type. Monogamous mating in crowded conditions, where cells have access to more than one potential partner, raises the question of how multiple-mating outcomes are prevented. Here we identify mutants capable of mating with multiple partners, revealing the mechanisms that ensure monogamous mating. Before fusion, cells develop polarity foci oriented towards potential partners. Competition between these polarity foci within each cell leads to disassembly of all but one focus, thus favoring a single fusion event. Fusion promotes the formation of heterodimeric complexes between subunits that are uniquely expressed in each mating type. One complex shuts off haploid-specific gene expression, and the other shuts off the ability to respond to pheromone. Zygotes able to form either complex remain monogamous, but zygotes lacking both can re-mate.


Sign in / Sign up

Export Citation Format

Share Document