scholarly journals The CDC20 gene product of Saccharomyces cerevisiae, a beta-transducin homolog, is required for a subset of microtubule-dependent cellular processes.

1991 ◽  
Vol 11 (11) ◽  
pp. 5592-5602 ◽  
Author(s):  
N Sethi ◽  
M C Monteagudo ◽  
D Koshland ◽  
E Hogan ◽  
D J Burke

Previous analysis of cdc20 mutants of the yeast Saccharomyces cerevisiae suggests that the CDC20 gene product (Cdc20p) is required for two microtubule-dependent processes, nuclear movements prior to anaphase and chromosome separation. Here we report that cdc20 mutants are defective for a third microtubule-mediated event, nuclear fusion during mating of G1 cells, but appear normal for a fourth microtubule-dependent process, nuclear migration after DNA replication. Therefore, Cdc20p is required for a subset of microtubule-dependent processes and functions at multiple stages in the life cycle. Consistent with this interpretation, we find that cdc20 cells arrested by alpha-factor or at the restrictive temperature accumulate anomalous microtubule structures, as detected by indirect immunofluorescence. The anomalous microtubule staining patterns are due to cdc20 because intragenic revertants that revert the temperature sensitivity have normal microtubule morphologies. cdc20 mutants have a sevenfold increase in the intensity of antitubulin fluorescence in intranuclear spindles compared with spindles from wild-type cells, yet the total amount of tubulin is indistinguishable by Western immunoblot analysis. This result suggests that Cdc20p modulates microtubule structure in wild-type cells either by promoting microtubule disassembly or by altering the surface of the microtubules. Finally, we cloned and sequenced CDC20 and show that it encodes a member of a family of proteins that share homology to the beta subunit of transducin.

1991 ◽  
Vol 11 (11) ◽  
pp. 5592-5602
Author(s):  
N Sethi ◽  
M C Monteagudo ◽  
D Koshland ◽  
E Hogan ◽  
D J Burke

Previous analysis of cdc20 mutants of the yeast Saccharomyces cerevisiae suggests that the CDC20 gene product (Cdc20p) is required for two microtubule-dependent processes, nuclear movements prior to anaphase and chromosome separation. Here we report that cdc20 mutants are defective for a third microtubule-mediated event, nuclear fusion during mating of G1 cells, but appear normal for a fourth microtubule-dependent process, nuclear migration after DNA replication. Therefore, Cdc20p is required for a subset of microtubule-dependent processes and functions at multiple stages in the life cycle. Consistent with this interpretation, we find that cdc20 cells arrested by alpha-factor or at the restrictive temperature accumulate anomalous microtubule structures, as detected by indirect immunofluorescence. The anomalous microtubule staining patterns are due to cdc20 because intragenic revertants that revert the temperature sensitivity have normal microtubule morphologies. cdc20 mutants have a sevenfold increase in the intensity of antitubulin fluorescence in intranuclear spindles compared with spindles from wild-type cells, yet the total amount of tubulin is indistinguishable by Western immunoblot analysis. This result suggests that Cdc20p modulates microtubule structure in wild-type cells either by promoting microtubule disassembly or by altering the surface of the microtubules. Finally, we cloned and sequenced CDC20 and show that it encodes a member of a family of proteins that share homology to the beta subunit of transducin.


1994 ◽  
Vol 14 (8) ◽  
pp. 5569-5578 ◽  
Author(s):  
K Mitsui ◽  
S Yaguchi ◽  
K Tsurugi

A gene with an open reading frame encoding a protein of 417 amino acid residues with a Gly-Thr repeat was isolated from the yeast Saccharomyces cerevisiae by using synthetic oligonucleotides encoding three Gly-Thr dimers as probes. The deduced amino acid sequence showed partial homology to the clock-affecting gene, per, of Drosophila melanogaster in the regions including the GT repeat. The function of the gene, named GTS1, was examined by characterizing the phenotypes of transformants with different copy numbers of the GTS1 gene produced either by inactivating the GTS1 gene by gene disruption (TM delta gts1) or by transformation with multicopy plasmid pPER119 (TMpGTS1). They grew at similar rates during the exponential growth phase, but the lag phases were shorter for TM delta gts1 and longer for TMpGTS1 cells than that for the wild type. Analyses of their cell cycle parameters using synchronized cells revealed that the unbudding period changed as a function of gene dosage; that is, the periods of TM delta gts1 and TMpGTS1 were about 20% shorter and longer, respectively, than that of the wild-type. Another significant change in the transformants was detected in the distribution of the cell size. The mean cell volume of the TM delta gts1 cells in the unbudded period (single cells) was 27% smaller than that of single wild-type cells, whereas that of single TMpGTS1 cells was 48% larger. Furthermore, in the temperature-sensitive cdc4 mutant, the GTS1 gene affected the timing of budding at the restrictive temperature. Thus, the GTS1 gene product appears to modulate the timing of budding to obtain an appropriate cell size independent of the DNA replication cycle.


1986 ◽  
Vol 6 (1) ◽  
pp. 158-167 ◽  
Author(s):  
E Yeh ◽  
J Carbon ◽  
K Bloom

We used DNA fragments from the centromere regions of yeast (Saccharomyces cerevisiae) chromosomes III and XI to examine the transcriptional activity within this chromosomal domain. DNA transcripts were found 200 to 300 base pairs from the 250-base-pair centromere core and lie within an ordered chromatin array. No transcripts were detected from the functional centromere region. We examined the cellular function of one of these tightly centromere-linked transcripts. (CEN11)L, by disrupting the coding sequences in vivo and analyzing the phenotype of the mutant yeast cell. Diploids heterozygous for the (CEN11)L disruption sporulated at wild-type levels, and the absence of the (CEN11)L gene product had no effect on the viability or mitotic growth of haploid cells. Diploids homozygous for the (CEN11)L disruption were unable to sporulate when induced by the appropriate nutritional cues. The mutant cells were competent for intragenic recombination and appeared to be blocked at the mononucleate stage. The temporal ordering of (CEN11)L function with respect to the sporulation mutant spo13 suggests that the (CEN11)L gene product may be required at both the first and second meiotic cell divisions. This new sporulation gene has been termed SPO15.


1986 ◽  
Vol 6 (1) ◽  
pp. 158-167
Author(s):  
E Yeh ◽  
J Carbon ◽  
K Bloom

We used DNA fragments from the centromere regions of yeast (Saccharomyces cerevisiae) chromosomes III and XI to examine the transcriptional activity within this chromosomal domain. DNA transcripts were found 200 to 300 base pairs from the 250-base-pair centromere core and lie within an ordered chromatin array. No transcripts were detected from the functional centromere region. We examined the cellular function of one of these tightly centromere-linked transcripts. (CEN11)L, by disrupting the coding sequences in vivo and analyzing the phenotype of the mutant yeast cell. Diploids heterozygous for the (CEN11)L disruption sporulated at wild-type levels, and the absence of the (CEN11)L gene product had no effect on the viability or mitotic growth of haploid cells. Diploids homozygous for the (CEN11)L disruption were unable to sporulate when induced by the appropriate nutritional cues. The mutant cells were competent for intragenic recombination and appeared to be blocked at the mononucleate stage. The temporal ordering of (CEN11)L function with respect to the sporulation mutant spo13 suggests that the (CEN11)L gene product may be required at both the first and second meiotic cell divisions. This new sporulation gene has been termed SPO15.


1982 ◽  
Vol 2 (9) ◽  
pp. 1052-1063
Author(s):  
J R Shuster

Temperature-sensitive mutants which arrest in the G1 phase of the cell cycle have been described for the yeast Saccharomyces cerevisiae. One class of these mutants (carrying cdc28, cdc36, cdc37, or cdc39) forms a shmoo morphology at restrictive temperature, characteristic of mating pheromone-arrested wild-type cells. Therefore, one hypothesis to explain the control of cell division by mating factors states that mating pheromones arrest wild-type cells by inactivating one or more of these CDC gene products. A class of mutants (carrying ste4, ste5, ste7, ste11, or ste12) which is insensitive to mating pheromone and sterile has also been described. One possible function of the STE gene products is the inactivation of the CDC gene products in the presence of a mating pheromone. A model incorporating these two hypotheses predicts that such STE gene products will not be required for mating in strains carrying an appropriate cdc lesion. This prediction was tested by assaying the mating abilities of double mutants for all of the pairwise combinations of cdc and ste mutations. Lesions in either cdc36 or cdc39 suppressed the mating defect due to ste4 and ste5. Allele specificity was observed in the suppression of both ste4 and ste5. The results indicate that the CDC36, CDC39, STE4, and STE5 gene products interact functionally or physically or both in the regulation of cell division mediated by the presence or absence of mating pheromones. The cdc36 and cdc39 mutations did not suppress ste7, ste11, or ste12. Lesions in cdc28 or cdc37 did not suppress any of the ste mutations. Other models of CDC and STE gene action which predicted that some of the cdc and ste mutations would be alleles of the same locus were tested. None of the cdc mutations was allelic to the ste mutations and, therefore, these models were eliminated.


1993 ◽  
Vol 13 (12) ◽  
pp. 7553-7565
Author(s):  
Q Xu ◽  
G C Johnston ◽  
R A Singer

The CDC68 gene (also called SPT16) encodes a transcription factor for the expression of a diverse set of genes in the budding yeast Saccharomyces cerevisiae. To identify other proteins that are functionally related to the Cdc68 protein, we searched for genetic suppressors of a cdc68 mutation. Four suppressor genes in which mutations reverse the temperature sensitivity imposed by the cdc68-1 mutation were found. We show here that one of the suppressor genes is the previously reported SAN1 gene; san1 mutations were originally identified as suppressors of a sir4 mutation, implicated in the chromatin-mediated transcriptional silencing of the two mating-type loci HML and HMR. Each san1 mutation, including a san1 null allele, reversed all aspects of the cdc68 mutant phenotype. Conversely, increased copy number of the wild-type SAN1 gene lowered the restrictive temperature for the cdc68-1 mutation. Our findings suggest that the San1 protein antagonizes the transcriptional activator function of the Cdc68 protein. The identification of san1 mutations as suppressors of cdc68 mutations suggests a role for Cdc68 in chromatin structure.


1989 ◽  
Vol 109 (6) ◽  
pp. 3355-3366 ◽  
Author(s):  
R E Palmer ◽  
M Koval ◽  
D Koshland

Nuclear DNA movement in the yeast, Saccharomyces cerevisiae, was analyzed in live cells using digital imaging microscopy and corroborated by the analysis of nuclear DNA position in fixed cells. During anaphase, the replicated nuclear genomes initially separated at a rate of 1 micron/min. As the genomes separated, the rate of movement became discontinuous. In addition, the axis defined by the segregating genomes rotated relative to the cell surface. The similarity between these results and those previously obtained in higher eukaryotes suggest that the mechanism of anaphase movement may be highly conserved. Before chromosome separation, novel nuclear DNA movements were observed in cdc13, cdc16, and cdc23 cells but not in wild-type or cdc20 cells. These novel nuclear DNA movements correlated with variability in spindle position and length in cdc16 cells. Models for the mechanism of these movements and their induction by certain cdc mutants are discussed.


1982 ◽  
Vol 2 (9) ◽  
pp. 1052-1063 ◽  
Author(s):  
J R Shuster

Temperature-sensitive mutants which arrest in the G1 phase of the cell cycle have been described for the yeast Saccharomyces cerevisiae. One class of these mutants (carrying cdc28, cdc36, cdc37, or cdc39) forms a shmoo morphology at restrictive temperature, characteristic of mating pheromone-arrested wild-type cells. Therefore, one hypothesis to explain the control of cell division by mating factors states that mating pheromones arrest wild-type cells by inactivating one or more of these CDC gene products. A class of mutants (carrying ste4, ste5, ste7, ste11, or ste12) which is insensitive to mating pheromone and sterile has also been described. One possible function of the STE gene products is the inactivation of the CDC gene products in the presence of a mating pheromone. A model incorporating these two hypotheses predicts that such STE gene products will not be required for mating in strains carrying an appropriate cdc lesion. This prediction was tested by assaying the mating abilities of double mutants for all of the pairwise combinations of cdc and ste mutations. Lesions in either cdc36 or cdc39 suppressed the mating defect due to ste4 and ste5. Allele specificity was observed in the suppression of both ste4 and ste5. The results indicate that the CDC36, CDC39, STE4, and STE5 gene products interact functionally or physically or both in the regulation of cell division mediated by the presence or absence of mating pheromones. The cdc36 and cdc39 mutations did not suppress ste7, ste11, or ste12. Lesions in cdc28 or cdc37 did not suppress any of the ste mutations. Other models of CDC and STE gene action which predicted that some of the cdc and ste mutations would be alleles of the same locus were tested. None of the cdc mutations was allelic to the ste mutations and, therefore, these models were eliminated.


1994 ◽  
Vol 14 (8) ◽  
pp. 5569-5578
Author(s):  
K Mitsui ◽  
S Yaguchi ◽  
K Tsurugi

A gene with an open reading frame encoding a protein of 417 amino acid residues with a Gly-Thr repeat was isolated from the yeast Saccharomyces cerevisiae by using synthetic oligonucleotides encoding three Gly-Thr dimers as probes. The deduced amino acid sequence showed partial homology to the clock-affecting gene, per, of Drosophila melanogaster in the regions including the GT repeat. The function of the gene, named GTS1, was examined by characterizing the phenotypes of transformants with different copy numbers of the GTS1 gene produced either by inactivating the GTS1 gene by gene disruption (TM delta gts1) or by transformation with multicopy plasmid pPER119 (TMpGTS1). They grew at similar rates during the exponential growth phase, but the lag phases were shorter for TM delta gts1 and longer for TMpGTS1 cells than that for the wild type. Analyses of their cell cycle parameters using synchronized cells revealed that the unbudding period changed as a function of gene dosage; that is, the periods of TM delta gts1 and TMpGTS1 were about 20% shorter and longer, respectively, than that of the wild-type. Another significant change in the transformants was detected in the distribution of the cell size. The mean cell volume of the TM delta gts1 cells in the unbudded period (single cells) was 27% smaller than that of single wild-type cells, whereas that of single TMpGTS1 cells was 48% larger. Furthermore, in the temperature-sensitive cdc4 mutant, the GTS1 gene affected the timing of budding at the restrictive temperature. Thus, the GTS1 gene product appears to modulate the timing of budding to obtain an appropriate cell size independent of the DNA replication cycle.


1993 ◽  
Vol 13 (12) ◽  
pp. 7553-7565 ◽  
Author(s):  
Q Xu ◽  
G C Johnston ◽  
R A Singer

The CDC68 gene (also called SPT16) encodes a transcription factor for the expression of a diverse set of genes in the budding yeast Saccharomyces cerevisiae. To identify other proteins that are functionally related to the Cdc68 protein, we searched for genetic suppressors of a cdc68 mutation. Four suppressor genes in which mutations reverse the temperature sensitivity imposed by the cdc68-1 mutation were found. We show here that one of the suppressor genes is the previously reported SAN1 gene; san1 mutations were originally identified as suppressors of a sir4 mutation, implicated in the chromatin-mediated transcriptional silencing of the two mating-type loci HML and HMR. Each san1 mutation, including a san1 null allele, reversed all aspects of the cdc68 mutant phenotype. Conversely, increased copy number of the wild-type SAN1 gene lowered the restrictive temperature for the cdc68-1 mutation. Our findings suggest that the San1 protein antagonizes the transcriptional activator function of the Cdc68 protein. The identification of san1 mutations as suppressors of cdc68 mutations suggests a role for Cdc68 in chromatin structure.


Sign in / Sign up

Export Citation Format

Share Document