scholarly journals Cell cycle-specific expression and nuclear binding of DNA polymerase alpha.

1991 ◽  
Vol 11 (6) ◽  
pp. 3384-3389 ◽  
Author(s):  
T Stokke ◽  
B Erikstein ◽  
H Holte ◽  
S Funderud ◽  
H B Steen

The expression and distribution of DNA polymerase alpha was measured by cytometry and confocal laser scanning microscopy. Expression was proportional to DNA content in proliferating cells, while only S-phase cells retained DNA polymerase alpha after detergent extraction. Nuclear DNA polymerase alpha binding may be one of the key events of S-phase entry.

1991 ◽  
Vol 11 (6) ◽  
pp. 3384-3389
Author(s):  
T Stokke ◽  
B Erikstein ◽  
H Holte ◽  
S Funderud ◽  
H B Steen

The expression and distribution of DNA polymerase alpha was measured by cytometry and confocal laser scanning microscopy. Expression was proportional to DNA content in proliferating cells, while only S-phase cells retained DNA polymerase alpha after detergent extraction. Nuclear DNA polymerase alpha binding may be one of the key events of S-phase entry.


1996 ◽  
Vol 44 (11) ◽  
pp. 1337-1343 ◽  
Author(s):  
M Matsuta ◽  
M Matsuta ◽  
S Hayashi ◽  
S Yasumi ◽  
K Sasaki ◽  
...  

We demonstrated that the three-dimensional (3-D) locational and morphological differences of chromosome 17 are dependent on each cell cycle phase in the clinical materials. Cell suspensions prepared from hypertrophied tonsil were hybridized with chromosome 17 whole painting probe or its centromeric probe and the probes were detected with fluorescein isothiocyanate. Then the cells were sorted from G(0+1), S-, and G(2+M)-phase fractions by flow cytometry and observed by confocal laser scanning microscopy to obtain the serial optical sections. The 3-D images were obtained by assembling these sections using a computerized image analysis device. The distribution of centromeric copies was analyzed statistically, and the data values were not a population of random distribution within a sphere. The copies were observed in the periphery of the nuclei in G(0+1)- and S-phase. The 3-D images revealed that chromosome 17 was oval in shape in the G(0+1)-phase nucleus, and was changing into a flame shape in the S-phase, with arms stretching out along the nuclear membrane, and looked bush shaped in G2-phase. The eccentric distribution of chromosome 17 in G(0+1)- and S-phase nuclei may reflect the optimal efficiency of incorporating and/or releasing essential materials and products.


2020 ◽  
Vol 8 (3) ◽  
pp. 409 ◽  
Author(s):  
Sohail Raza ◽  
Farzana Shahin ◽  
Wenjun Zhai ◽  
Hanxiong Li ◽  
Gualtiero Alvisi ◽  
...  

Bovine herpesvirus1 (BoHV-1) is a major bovine pathogen. Despite several vaccines being available to prevent viral infection, outbreaks are frequent and cause important economic consequences worldwide. The development of new antiviral drugs is therefore highly desirable. In this context, viral genome replication represents a potential target for therapeutic intervention. BoHV-1 genome is a dsDNA molecule whose replication takes place in the nuclei of infected cells and is mediated by a viral encoded DNA polymerase holoenzyme. Here, we studied the physical interaction and subcellular localization of BoHV-1 DNA polymerase subunits in cells for the first time. By means of co-immunoprecipitation and confocal laser scanning microscopy (CLSM) experiments, we could show that the processivity factor of the DNA polymerase pUL42 is capable of being autonomously transported into the nucleus, whereas the catalytic subunit pUL30 is not. Accordingly, a putative classic NLS (cNLS) was identified on pUL42 but not on pUL30. Importantly, both proteins could interact in the absence of other viral proteins and their co-expression resulted in accumulation of UL30 to the cell nucleus. Treatment of cells with Ivermectin, an anti-parasitic drug which has been recently identified as an inhibitor of importin α/β-dependent nuclear transport, reduced UL42 nuclear import and specifically reduced BoHV-1 replication in a dose-dependent manner, while virus attachment and entry into cells were not affected. Therefore, this study provides a new option of antiviral therapy for BoHV-1 infection with Ivermectin.


2002 ◽  
Vol 11 (4) ◽  
pp. 313-324 ◽  
Author(s):  
Anne Mari Rokstad ◽  
Synnøve Holtan ◽  
Berit Strand ◽  
Bjørg Steinkjer ◽  
Liv Ryan ◽  
...  

Microencapsulation of genetically engineered cells may have important applications as delivery systems for therapeutic proteins. However, optimization of the microcapsules with regard to mechanical stability, cell growth, and secretion of proteins is necessary in order to evaluate the future use of this delivery technology. We have explored the growth, survival, and secretion of therapeutic proteins from 293-EBNA cells producing endostatin (293 endo cells) and JJN3 myeloma cells producing hepatocyte growth factor (HGF) that have been embedded in various types of alginate capsules. Parameters that affect capsule integrity such as homogenous and inhomogenous gel cores and addition of an outer poly-l-lysine (PLL)–alginate coating were evaluated in relation to cell functions. When cells were encapsulated, the PLL layer was found to be absolutely required for the capsule integrity. The JJN3 and 293 endo cells displayed completely different growth and distribution patterns of live and dead cells within the microcapsules, as shown by 3D pictures reconstructed from images taken with confocal laser scanning microscopy (CLSM). Encapsulated JJN3 cells showed a bell-shaped growth and HGF secretion curve over a time period of 5 months. The 293 endo cells reached a plateau phase in growth after 23 days postencapsulation; however, after around 30 days a fraction of the microcapsules started to disintegrate. Microcapsule disintegration occurred with time irrespective of capsule and cell type, showing that alginate microcapsules possessing relatively high gel strength are not strong enough to keep proliferating cells within the microcapsules for prolonged time periods. Although this study shows that the stability of an alginate-based cell factory can be increased by a PLL–alginate coating, further improvement is necessary with regard to capsule integrity as well as controlling the cell growth before this technology can be used for therapy.


Author(s):  
Thomas M. Jovin ◽  
Michel Robert-Nicoud ◽  
Donna J. Arndt-Jovin ◽  
Thorsten Schormann

Light microscopic techniques for visualizing biomolecules and biochemical processes in situ have become indispensable in studies concerning the structural organization of supramolecular assemblies in cells and of processes during the cell cycle, transformation, differentiation, and development. Confocal laser scanning microscopy offers a number of advantages for the in situ localization and quantitation of fluorescence labeled targets and probes: (i) rejection of interfering signals emanating from out-of-focus and adjacent structures, allowing the “optical sectioning” of the specimen and 3-D reconstruction without time consuming deconvolution; (ii) increased spatial resolution; (iii) electronic control of contrast and magnification; (iv) simultanous imaging of the specimen by optical phenomena based on incident, scattered, emitted, and transmitted light; and (v) simultanous use of different fluorescent probes and types of detectors.We currently use a confocal laser scanning microscope CLSM (Zeiss, Oberkochen) equipped with 3-laser excitation (u.v - visible) and confocal optics in the fluorescence mode, as well as a computer-controlled X-Y-Z scanning stage with 0.1 μ resolution.


Author(s):  
M. H. Chestnut ◽  
C. E. Catrenich

Helicobacter pylori is a non-invasive, Gram-negative spiral bacterium first identified in 1983, and subsequently implicated in the pathogenesis of gastroduodenal disease including gastritis and peptic ulcer disease. Cytotoxic activity, manifested by intracytoplasmic vacuolation of mammalian cells in vitro, was identified in 55% of H. pylori strains examined. The vacuoles increase in number and size during extended incubation, resulting in vacuolar and cellular degeneration after 24 h to 48 h. Vacuolation of gastric epithelial cells is also observed in vivo during infection by H. pylori. A high molecular weight, heat labile protein is believed to be responsible for vacuolation and to significantly contribute to the development of gastroduodenal disease in humans. The mechanism by which the cytotoxin exerts its effect is unknown, as is the intracellular origin of the vacuolar membrane and contents. Acridine orange is a membrane-permeant weak base that initially accumulates in low-pH compartments. We have used acridine orange accumulation in conjunction with confocal laser scanning microscopy of toxin-treated cells to begin probing the nature and origin of these vacuoles.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (10) ◽  
pp. 7-15
Author(s):  
HANNA KOIVULA ◽  
DOUGLAS BOUSFIELD ◽  
MARTTI TOIVAKKA

In the offset printing process, ink film splitting has an important impact on formation of ink filaments. The filament size and its distribution influence the leveling of ink and hence affect ink setting and the print quality. However, ink filaments are difficult to image due to their short lifetime and fine length scale. Due to this difficulty, limited work has been reported on the parameters that influence filament size and methods to characterize it. We imaged ink filament remains and quantified some of their characteristics by changing printing speed, ink amount, and fountain solution type. Printed samples were prepared using a laboratory printability tester with varying ink levels and operating settings. Rhodamine B dye was incorporated into fountain solutions to aid in the detection of the filaments. The prints were then imaged with a confocal laser scanning microscope (CLSM) and images were further analyzed for their surface topography. Modeling of the pressure pulses in the printing nip was included to better understand the mechanism of filament formation and the origin of filament length scale. Printing speed and ink amount changed the size distribution of the observed filament remains. There was no significant difference between fountain solutions with or without isopropyl alcohol on the observed patterns of the filament remains.


2012 ◽  
Vol 11 (3) ◽  
pp. 669-674 ◽  
Author(s):  
Szabolcs Szilveszter ◽  
Botond Raduly ◽  
Szilard Bucs ◽  
Beata Abraham ◽  
Szabolcs Lanyi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document