scholarly journals Differential regulation of vascular cell adhesion molecule 1 gene expression by specific NF-kappa B subunits in endothelial and epithelial cells.

1993 ◽  
Vol 13 (10) ◽  
pp. 6283-6289 ◽  
Author(s):  
H B Shu ◽  
A B Agranoff ◽  
E G Nabel ◽  
K Leung ◽  
C S Duckett ◽  
...  

Vascular cell adhesion molecule 1 (VCAM-1) is expressed in both endothelial and epithelial cell types, where it contributes to lymphocyte migration to sites of inflammation. Its expression is regulated by cytokines, in part through two kappa B-like regulatory elements. Because NF-kappa B can be composed of multiple alternative subunits with differential effects on gene expression, the role of different specific NF-kappa B family members subunits in VCAM-1 regulation is unknown. In this report, we define the contribution of different NF-kappa B family members to VCAM-1 gene regulation. We show that both kappa B sites in the VCAM-1 enhancer are required to optimally stimulate gene expression, but the enhancer is differentially regulated by specific combinations of NF-kappa B subunits. At low concentrations, RelA(p65) acted in concert with the approximately 50-kDa product of p105 NF-kappa B, NF-kappa B1(p50), to stimulate transcription, and at high concentrations, RelA(p65) alone stimulated the VCAM-1 promoter. In contrast, NF-kappa B2 inhibited functional activation of the VCAM reporter by p65. Consistent with this finding, an additional binding complex was detected by using recombinant NF-kappa B2(p49)/RelA(p65) with radiolabeled VCAM kappa B site probes. Interestingly, the human immunodeficiency virus enhancer responded differently to stimulation by NF-kappa B subunits, with optimal response to p49(100)/p65. Analysis of NF-kappa B mRNA in human umbilical vein endothelial cells revealed that nfkb1, nfkb2, and relA NF-kappa B but not c-rel were induced by tumor necrosis factor alpha and lipopolysaccharide, which also induce VCAM-1. These data suggest that specific subunits of NF-kappa B regulate VCAM-1 and differentially activate other genes in these cells.

1993 ◽  
Vol 13 (10) ◽  
pp. 6283-6289
Author(s):  
H B Shu ◽  
A B Agranoff ◽  
E G Nabel ◽  
K Leung ◽  
C S Duckett ◽  
...  

Vascular cell adhesion molecule 1 (VCAM-1) is expressed in both endothelial and epithelial cell types, where it contributes to lymphocyte migration to sites of inflammation. Its expression is regulated by cytokines, in part through two kappa B-like regulatory elements. Because NF-kappa B can be composed of multiple alternative subunits with differential effects on gene expression, the role of different specific NF-kappa B family members subunits in VCAM-1 regulation is unknown. In this report, we define the contribution of different NF-kappa B family members to VCAM-1 gene regulation. We show that both kappa B sites in the VCAM-1 enhancer are required to optimally stimulate gene expression, but the enhancer is differentially regulated by specific combinations of NF-kappa B subunits. At low concentrations, RelA(p65) acted in concert with the approximately 50-kDa product of p105 NF-kappa B, NF-kappa B1(p50), to stimulate transcription, and at high concentrations, RelA(p65) alone stimulated the VCAM-1 promoter. In contrast, NF-kappa B2 inhibited functional activation of the VCAM reporter by p65. Consistent with this finding, an additional binding complex was detected by using recombinant NF-kappa B2(p49)/RelA(p65) with radiolabeled VCAM kappa B site probes. Interestingly, the human immunodeficiency virus enhancer responded differently to stimulation by NF-kappa B subunits, with optimal response to p49(100)/p65. Analysis of NF-kappa B mRNA in human umbilical vein endothelial cells revealed that nfkb1, nfkb2, and relA NF-kappa B but not c-rel were induced by tumor necrosis factor alpha and lipopolysaccharide, which also induce VCAM-1. These data suggest that specific subunits of NF-kappa B regulate VCAM-1 and differentially activate other genes in these cells.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1025
Author(s):  
Sara Pastorino ◽  
Sara Baldassari ◽  
Giorgia Ailuno ◽  
Guendalina Zuccari ◽  
Giuliana Drava ◽  
...  

Atherosclerosis is a chronic progressive disease involving inflammatory events, such as the overexpression of adhesion molecules including the endothelial Vascular Cell Adhesion Molecule-1 (VCAM-1). VCAM-1 is rapidly overexpressed in the first stages of atherosclerosis, thus representing a promising target for early atheroma detection. Two novel Positron Emission Tomography (PET) radiopharmaceuticals (MacroP and NAMP), based on the VCAM-1-binding peptide having sequence VHPKQHRGGSKGC, were synthesized and characterized. MacroP is derived from the direct conjugation of a DOTA derivative with the peptide, while NAMP is a biotin derivative conceived to be employed in a three-step pretargeting system, involving the use of a double-chelating derivative of DOTA. The identity of the newly synthesized radiopharmaceuticals was confirmed by mass spectrometry and, after radiolabeling with 68Ga, both showed high radiochemical purity; in vitro tests on human umbilical vein endothelial cells evidenced their VCAM-1 binding ability, with higher radioactive uptake in the case of NAMP. Moreover, NAMP might also be employed in a theranostic approach in association with functionalized biotinylated nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document