b subunits
Recently Published Documents


TOTAL DOCUMENTS

207
(FIVE YEARS 19)

H-INDEX

36
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lior Artzi ◽  
Assaf Alon ◽  
Kelly P. Brock ◽  
Anna G. Green ◽  
Amy Tam ◽  
...  

AbstractBacteria from the orders Bacillales and Clostridiales differentiate into stress-resistant spores that can remain dormant for years, yet rapidly germinate upon nutrient sensing. How spores monitor nutrients is poorly understood but in most cases requires putative membrane receptors. The prototypical receptor from Bacillus subtilis consists of three proteins (GerAA, GerAB, GerAC) required for germination in response to L-alanine. GerAB belongs to the Amino Acid-Polyamine-Organocation superfamily of transporters. Using evolutionary co-variation analysis, we provide evidence that GerAB adopts a structure similar to an L-alanine transporter from this superfamily. We show that mutations in gerAB predicted to disrupt the ligand-binding pocket impair germination, while mutations predicted to function in L-alanine recognition enable spores to respond to L-leucine or L-serine. Finally, substitutions of bulkier residues at these positions cause constitutive germination. These data suggest that GerAB is the L-alanine sensor and that B subunits in this broadly conserved family function in nutrient detection.


2021 ◽  
Author(s):  
Roberto Marotta ◽  
Alessandra Del Giudice ◽  
Gurrieri Libero ◽  
Silvia Fanti ◽  
Paolo Swec ◽  
...  

Oxygenic phototrophs perform carbon fixation through the Calvin–Benson cycle. Different mechanisms adjust the cycle and the light–harvesting reactions to rapid environmental changes. Photosynthetic glyceraldehyde–3–phosphate dehydrogenase (GAPDH) is a key enzyme of the cycle. In land plants, different photosynthetic GAPDHs exist: the most abundant formed by hetero-tetramers of A and B–subunits, and the homotetramer A4. Regardless of the subunit composition, GAPDH is the major consumer of photosynthetic NADPH and for this reason is strictly regulated. While A4–GAPDH is regulated by CP12, AB–GAPDH is autonomously regulated through the C-terminal extension (CTE) of B–subunits. Reversible inactivation of AB–GAPDH occurs via oxidation of a cysteine pair located in the CTE, and substitution of NADP(H) with NAD(H) in the cofactor binding domain. These combined conditions lead to a change in the oligomerization state and enzyme inactivation. SEC–SAXS and single–particle cryoEM analysis disclosed the structural basis of this regulatory mechanism. Both approaches revealed that (A2B2)n–GAPDH oligomers with n=1, 2, 4 and 5 co–exist in a dynamic system. B–subunits mediate the contacts between adjacent A2B2 tetramers in A4B4 and A8B8 oligomers. The CTE of each B–subunit penetrates into the active site of a B–subunit of the adjacent tetramer, while the CTE of this subunit moves in the opposite direction, effectively preventing the binding of the substrate 1,3–bisphosphoglycerate in the B–subunits. The whole mechanism is made possible, and eventually controlled, by pyridine nucleotides. In fact, NAD(H) by removing NADP(H) from A–subunits allows the entrance of the CTE in B–subunits active sites and hence inactive oligomer stabilization.


2021 ◽  
Author(s):  
Hiroyuki Terashima ◽  
Kiyoshiro Hori ◽  
Kunio Ihara ◽  
Michio Homma ◽  
Seiji Kojima

Abstract The flagellar motor rotates bi-directionally in counter-clockwise (CCW) and clockwise (CW) directions. The motor consists of a stator and a rotor. Recent structural studies have revealed that the stator is composed of a pentameric ring of A subunits and a dimer axis of B subunits. The stator interacts with the rotor through conserved charged and neighboring residues, and the rotational power is generated by their interactions through a gear-like mechanism. The rotational direction is controlled by chemotaxis signaling transmitted to the rotor, with no evidence for the stator being involved. In this study, we found novel mutations that affect the switching of the rotational direction at the putative interaction site of the stator to generate rotational force. Our results highlight a novel aspect of flagellar motor function that appropriate switching of the interaction states between the stator and rotor is critical for controlling the rotational direction.


2021 ◽  
Author(s):  
Aniruddha Sasmal ◽  
Naazneen Khan ◽  
Zahra Khedri ◽  
Benjamin P. Kellman ◽  
Saurabh Srivastava ◽  
...  

Vertebrate sialic acids (Sias) display much diversity in modifications, linkages and underlying glycans. Slide microarrays allow high-throughput analysis of sialoglycan-protein interactions. The preceding paper used ~150 structurally-defined sialyltrisaccharides with various Sias and modified forms at non-reducing ends, to compare pentameric sialoglycan-recognizing bacterial toxin B subunits. Unlike the poor correlation between B subunits and species phylogeny, there is stronger correlation with Sia types prominently expressed in susceptible species. Further supporting this pattern we report a B subunit(YenB) from Yersinia enterocolitica (broad host range) recognizing almost all sialoglycans in the microarray, including 4-O-acetylated-Sias not recognized by a Y.pestis orthologue(YpeB). Differential Sia-binding patterns were also observed with phylogenetically-related B subunits from Escherichia coli(SubB), Salmonella Typhi(PltB), S. Typhimurium(ArtB), extra-intestinal E. coli(EcPltB), Vibrio cholera(CtxB), and cholera family homologue of E. coli(EcxB). Given library size, data sorting and analysis posed a challenge. We devised a 9-digit code for trisaccharides with terminal Sias and underlying two monosaccharides assigned from the non-reducing end, with three digits assigning a monosaccharide, its modifications, and linkage. This code allows logical sorting, motif searching of results, and optimizes printing. While we developed the system for the >113,000 possible linear sialyltrisaccharides, we note that a biantennary N-glycan with two terminal sialoglycan trisaccharides could have >1010 potential combinations and a triantennary N-glycan with three terminal sequences, >1015 potential combinations. While all possibilities likely do not exist in nature, sialoglycans encode enormous diversity. Thus, while glycomic approaches address these challenges, naturally-occurring toxin B subunits are simpler tools to track the dynamic sialome in biological systems.


2021 ◽  
Author(s):  
Naazneen Khan ◽  
Aniruddha Sasmal ◽  
Zahra Khedri ◽  
Patrick Secrest ◽  
Andrea Verhagen ◽  
...  

Cytotoxic A subunits of bacterial AB5 toxins enter the cytosol following B subunit binding to host cell glycans. We report that A subunit phylogeny evolves independently of B subunits and suggest a future B subunit nomenclature based on species name. Phylogenetic analysis of B subunits that bind sialic acids (Sias) with homologous molecules in databases also show poor correlation with phylogeny. These data indicate ongoing lateral gene transfers between species, with mixing of A and B subunits. Some B subunits are not even associated with A subunits e.g., YpeB of Yersinia pestis, the etiologic agent of plague epidemics. Plague cannot be eradicated because of Y. pestis adaptability to numerous hosts. YpeB shares 58% identity/79% similarity with the homo-pentameric B subunit of E. coli Subtilase cytotoxin, and 48% identity/68% similarity with the B subunit of S. Typhi typhoid toxin. We previously showed selective binding of B5 pentamers to a sialoglycan microarray, with Sia preferences corresponding to hosts e.g., N-acetylneuraminic acid (Neu5Ac; prominent in humans) or N-glycolylneuraminic acid (Neu5Gc; prominent in ruminant mammals and rodents). Consistent with much broader host range of Y. pestis, YpeB binds all mammalian sialic acid types, except for 4-O-acetylated ones. Notably, YpeB alone causes dose-dependent cytotoxicity, abolished by a mutation (Y77F) eliminating Sia recognition, suggesting cell proliferation and death via lectin-like cross-linking of cell surface sialoglycoconjugates. These findings help explain the host range of Y. pestis and could be important for pathogenesis. Overall, our data indicate ongoing rapid evolution of both host Sias and pathogen toxin-binding properties.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Mary K Malone ◽  
Vanessa Torres ◽  
Jadwiga Turchan-Cholewo ◽  
Ann M Stowe

Background: N-methyl-D-aspartate (NMDARs) play a critical role in neuronal excitotoxicity after stroke. The actions of NMDARs have been shown mostly in obligatory GluN1 subunits on neurons and not GluN2A/B subunits. In B cells, these subunits have not been highly characterized though the presence of NMDARs has been shown. The function of the GluN2A/B subunits can be neuroprotective or pro-death in neurons, respectively. We hypothesized that GluN2A and GluN2B subunit presence on B cells would be affected by exposure to extracellular glutamate. Methods: Splenic B cells were isolated from 3-4mo-old C57BL/6 male mice via magnetic separation and treated with physiologic levels of L-glutamate (glu; 1uM) in the presence or absence of 5ug/mL LPS. B cell cytospins were stained for B220, GluN2A, and GluN2B, imaged using confocal microscopy, and quantified in FIJI. An average of 10.7 B cells were quantified per image at 80-157x magnification. RGB channels of the z-stacks were quantified to identify positive B220 expression. The z-stacks were split into 2D images and quantified plane-by-plane to identify GluN2A/B subunit clusters. Each cluster of subunits was recorded per cell in view across all planes of the original z-stack to yield total subunit count. Groups included 14-43 B cells quantified, and the number of subunits per cell were analyzed via ordinary two-way ANOVA, Sidak post-hoc test (Graphpad Prism). Significance was p<0.05. Results: There was an average of 19.3±7.2 GluN2A subunits and 19.0±5.0 GluN2B subunits per cell for unstimulated, untreated B cells. Neither glu treatment (p=0.23) nor LPS stimulation (p= 0.10) impacted the number of GluN2A subunits per B cell. LPS decreased GluN2B subunits when compared to unstimulated B cells (11.1±5.1 subunits; p=0.02). Glu treatment normalized GluN2B subunits per B cell near untreated baseline levels (18.2±11 subunits per cell; p=0.01), resulting in an interaction between LPS stimulation and glu treatment in B cells (F (1, 86) =6.180, P=0.015). Conclusions: Our data suggests activated B cells downregulate GluN2B-containing NMDARs following LPS stimulation. This downregulation mimics that of NMDAR activity on neurons upon excitoxicity (PMID: 24361499) but future studies should confirm GluN2B internalization.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 151
Author(s):  
Julia Ebeling ◽  
Anne Fünfhaus ◽  
Elke Genersch

The Gram-positive, spore-forming bacterium Paenibacillus larvae is the etiological agent of American Foulbrood, a highly contagious and often fatal honey bee brood disease. The species P. larvae comprises five so-called ERIC-genotypes which differ in virulence and pathogenesis strategies. In the past two decades, the identification and characterization of several P. larvae virulence factors have led to considerable progress in understanding the molecular basis of pathogen-host-interactions during P. larvae infections. Among these virulence factors are three ADP-ribosylating AB-toxins, Plx1, Plx2, and C3larvin. Plx1 is a phage-born toxin highly homologous to the pierisin-like AB-toxins expressed by the whites-and-yellows family Pieridae (Lepidoptera, Insecta) and to scabin expressed by the plant pathogen Streptomyces scabiei. These toxins ADP-ribosylate DNA and thus induce apoptosis. While the presumed cellular target of Plx1 still awaits final experimental proof, the classification of the A subunits of the binary AB-toxins Plx2 and C3larvin as typical C3-like toxins, which ADP-ribosylate Rho-proteins, has been confirmed experimentally. Normally, C3-exoenzymes do not occur together with a B subunit partner, but as single domain toxins. Interestingly, the B subunits of the two P. larvae C3-like toxins are homologous to the B-subunits of C2-like toxins with striking structural similarity to the PA-63 protomer of Bacillus anthracis.


2020 ◽  
Vol 160 ◽  
pp. 488-500
Author(s):  
Gernot Faustmann ◽  
Beate Tiran ◽  
Slave Trajanoski ◽  
Barbara Obermayer-Pietsch ◽  
Hans-Jürgen Gruber ◽  
...  

2020 ◽  
Author(s):  
Laura Bel Borja ◽  
Flavie Soubigou ◽  
Samuel J.P. Taylor ◽  
Conchita Fraguas Bringas ◽  
Jacqueline Budrewicz ◽  
...  

ABSTRACTProtein Phosphatase 2A (PP2A) is an heterotrimer composed of scaffolding (A), catalytic (C), and regulatory (B) subunits with various key roles during cell division. While A and C subunits form the core enzyme, the diversity generated by interchangeable B subunits dictates substrate specificity. Within the B subunits, B56-type subunits play important roles during meiosis in yeast and mice by protecting centromeric cohesion and stabilising the kinetochore-microtubule attachments. These functions are achieved through targeting of B56 subunits to centromere and kinetochore by Shugoshin and BUBR1. In the nematode Caenorhabditis elegans (C. elegans) the closest BUBR1 ortholog lacks the B56 interaction domain and the Shugoshin orthologue is not required for normal segregation during oocyte meiosis. Therefore, the role of PP2A in C. elegans female meiosis is not known. Here, we report that PP2A is essential for meiotic spindle assembly and chromosome dynamics during C. elegans female meiosis. Specifically, B56 subunits PPTR-1 and PPTR-2 associate with chromosomes during prometaphase I and regulate chromosome congression. The chromosome localization of B56 subunits does not require shugoshin orthologue SGO-1. Instead we have identified the kinase BUB-1 as the key B56 targeting factor to the chromosomes during meiosis. PP2A BUB-1 recruits PP2A:B56 to the chromosomes via dual mechanism: 1) PPTR-1/2 interacts with the newly identified LxxIxE short linear motif (SLiM) within a disordered region in BUB-1 in a phosphorylation-dependent manner; and 2) PPTR-2 can also be recruited to chromosomes in a BUB-1 kinase domain-dependent manner. Our results highlight a novel, BUB-1-dependent mechanism for B56 recruitment, essential for recruiting a pool of PP2A required for proper chromosome congression during meiosis I.


Sign in / Sign up

Export Citation Format

Share Document