The essential mitotic target of calmodulin is the 110-kilodalton component of the spindle pole body in Saccharomyces cerevisiae

1993 ◽  
Vol 13 (12) ◽  
pp. 7913-7924
Author(s):  
J R Geiser ◽  
H A Sundberg ◽  
B H Chang ◽  
E G Muller ◽  
T N Davis

Two independent methods identified the spindle pole body component Nuf1p/Spc110p as the essential mitotic target of calmodulin. Extragenic suppressors of cmd1-1 were isolated and found to define three loci, XCM1, XCM2, and XCM3 (extragenic suppressor of cmd1-1). The gene encoding a dominant suppressor allele of XCM1 was cloned. On the basis of DNA sequence analysis, genetic cosegregation, and mutational analysis, XCM1 was identified as NUF1/SPC110. Independently, a C-terminal portion of Nuf1p/Spc110p, amino acid residues 828 to 944, was isolated as a calmodulin-binding protein by the two-hybrid system. As assayed by the two-hybrid system, Nuf1p/Spc110p interacts with wild-type calmodulin and triple-mutant calmodulins defective in binding Ca2+ but not with two mutant calmodulins that confer a temperature-sensitive phenotype. Deletion analysis by the two-hybrid system mapped the calmodulin-binding site of Nuf1p/Spc110p to amino acid residues 900 to 927. Direct binding between calmodulin and Nuf1p/Spc110p was demonstrated by a modified gel overlay assay. Furthermore, indirect immunofluorescence with fixation procedures known to aid visualization of spindle pole body components localized calmodulin to the spindle pole body. Sequence analysis of five suppressor alleles of NUF1/SPC110 indicated that suppression of cmd1-1 occurs by C-terminal truncation of Nuf1p/Spc110p at amino acid residues 856, 863, or 881, thereby removing the calmodulin-binding site.

1993 ◽  
Vol 13 (12) ◽  
pp. 7913-7924 ◽  
Author(s):  
J R Geiser ◽  
H A Sundberg ◽  
B H Chang ◽  
E G Muller ◽  
T N Davis

Two independent methods identified the spindle pole body component Nuf1p/Spc110p as the essential mitotic target of calmodulin. Extragenic suppressors of cmd1-1 were isolated and found to define three loci, XCM1, XCM2, and XCM3 (extragenic suppressor of cmd1-1). The gene encoding a dominant suppressor allele of XCM1 was cloned. On the basis of DNA sequence analysis, genetic cosegregation, and mutational analysis, XCM1 was identified as NUF1/SPC110. Independently, a C-terminal portion of Nuf1p/Spc110p, amino acid residues 828 to 944, was isolated as a calmodulin-binding protein by the two-hybrid system. As assayed by the two-hybrid system, Nuf1p/Spc110p interacts with wild-type calmodulin and triple-mutant calmodulins defective in binding Ca2+ but not with two mutant calmodulins that confer a temperature-sensitive phenotype. Deletion analysis by the two-hybrid system mapped the calmodulin-binding site of Nuf1p/Spc110p to amino acid residues 900 to 927. Direct binding between calmodulin and Nuf1p/Spc110p was demonstrated by a modified gel overlay assay. Furthermore, indirect immunofluorescence with fixation procedures known to aid visualization of spindle pole body components localized calmodulin to the spindle pole body. Sequence analysis of five suppressor alleles of NUF1/SPC110 indicated that suppression of cmd1-1 occurs by C-terminal truncation of Nuf1p/Spc110p at amino acid residues 856, 863, or 881, thereby removing the calmodulin-binding site.


2006 ◽  
Vol 17 (1) ◽  
pp. 178-191 ◽  
Author(s):  
Jeffrey K. Moore ◽  
Sonia D'Silva ◽  
Rita K. Miller

Accurate positioning of the mitotic spindle in Saccharomyces cerevisiae is coordinated with the asymmetry of the two poles and requires the microtubule-to-actin linker Kar9p. The asymmetric localization of Kar9p to one spindle pole body (SPB) and microtubule (MT) plus ends requires Cdc28p. Here, we show that the CLIP-170 homologue Bik1p binds directly to Kar9p. In the absence of Bik1p, Kar9p localization is not restricted to the daughter-bound SPB, but it is instead found on both SPBs. Kar9p is hypophosphorylated in bik1Δ mutants, and Bik1p binds to both phosphorylated and unphosphorylated isoforms of Kar9p. Furthermore, the two-hybrid interaction between full-length KAR9 and the cyclin CLB5 requires BIK1. The binding site of Clb5p on Kar9p maps to a short region within the basic domain of Kar9p that contains a conserved phosphorylation site, serine 496. Consistent with this, Kar9p is found on both SPBs in clb5Δ mutants at a frequency comparable with that seen in kar9-S496A strains. Together, these data suggest that Bik1p promotes the phosphorylation of Kar9p on serine 496, which affects its asymmetric localization to one SPB and associated cytoplasmic MTs. These findings provide further insight into a mechanism for directing centrosomal inheritance.


1996 ◽  
Vol 109 (9) ◽  
pp. 2229-2237 ◽  
Author(s):  
A. Spang ◽  
K. Grein ◽  
E. Schiebel

Yeast calmodulin (CaM) was found to be localized to the microtubule organizing centre, the spindle pole body. The spindle pole body is a multi-layered structure consisting of outer, central and inner plaques. In this paper, we report that a fraction of CaM is in association with the central plaque of the spindle pole body. This localization is dependent on the calmodulin-binding site of another spindle pole body component, Spc110p, which serves as a spacer connecting the inner plaque with the central plaque. Since the CaM-binding site of Spc110p is located near the carboxy terminus, Spc110p-dependent localization of calmodulin defines the orientation of Spc110p with the carboxy terminus towards the central plaque and the amino terminus towards the inner plaque. This orientation of Spc110p was confirmed using antibodies specific for the amino-terminal end of Spc110p, which predominantly labelled the inner plaque. In addition, synthetic peptides corresponding to the calmodulin-binding site of Spc110p bound to calmodulin with a Kd in the nanomolar range and nearly independent of Ca2+.


2003 ◽  
Vol 270 (6) ◽  
pp. 449-461 ◽  
Author(s):  
F. Miki ◽  
A. Kurabayashi ◽  
Y. Tange ◽  
K. Okazaki ◽  
M. Shimanuki ◽  
...  

1996 ◽  
Vol 133 (1) ◽  
pp. 111-124 ◽  
Author(s):  
H A Sundberg ◽  
L Goetsch ◽  
B Byers ◽  
T N Davis

Previously we demonstrated that calmodulin binds to the carboxy terminus of Spc110p, an essential component of the Saccharomyces cerevisiae spindle pole body (SPB), and that this interaction is required for chromosome segregation. Immunoelectron microscopy presented here shows that calmodulin and thus the carboxy terminus of Spc110p localize to the central plaque. We created temperature-sensitive SPC110 mutations by combining PCR mutagenesis with a plasmid shuffle strategy. The temperature-sensitive allele spc110-220 differs from wild type at two sites. The cysteine 911 to arginine mutation resides in the calmodulin-binding site and alone confers a temperature-sensitive phenotype. Calmodulin overproduction suppresses the temperature sensitivity of spc110-220. Furthermore, calmodulin levels at the SPB decrease in the mutant cells at the restrictive temperature. Thus, calmodulin binding to Spc110-220p is defective at the nonpermissive temperature. Synchronized mutant cells incubated at the nonpermissive temperature arrest as large budded cells with a G2 content of DNA and suffer considerable lethality. Immunofluorescent staining demonstrates failure of nuclear DNA segregation and breakage of many spindles. Electron microscopy reveals an aberrant nuclear structure, the intranuclear microtubule organizer (IMO), that differs from a SPB but serves as a center of microtubule organization. The IMO appears during nascent SPB formation and disappears after SPB separation. The IMO contains both the 90-kD and the mutant 110-kD SPB components. Our results suggest that disruption of the calmodulin Spc110p interaction leads to the aberrant assembly of SPB components into the IMO, which in turn perturbs spindle formation.


2000 ◽  
Vol 11 (9) ◽  
pp. 2949-2959 ◽  
Author(s):  
Rita K. Miller ◽  
Soo-Chen Cheng ◽  
Mark D. Rose

In Saccharomyces cerevisiae, positioning of the mitotic spindle depends on the interaction of cytoplasmic microtubules with the cell cortex. In this process, cortical Kar9p in the bud acts as a link between the actin and microtubule cytoskeletons. To identify Kar9p-interacting proteins, a two-hybrid screen was conducted with the use of full-length Kar9p as bait, and three genes were identified: BIM1, STU2, andKAR9 itself. STU2 encodes a component of the spindle pole body. Bim1p is the yeast homologue of the human microtubule-binding protein EB1, which is a binding partner to the adenomatous polyposis coli protein involved in colon cancer. Eighty-nine amino acids within the third quarter of Bim1p was sufficient to confer interaction with Kar9p. The two-hybrid interactions were confirmed with the use of coimmunoprecipitation experiments. Genetic analysis placed Bim1p in the Kar9p pathway for nuclear migration. Bim1p was not required for Kar9p's cortical or spindle pole body localization. However, deletion ofBIM1 eliminated Kar9p localization along cytoplasmic microtubules. Furthermore, in the bim1 mutants, the cytoplasmic microtubules no longer intersected the cortical dot of Green Fluorescent Protein–Kar9p. These experiments demonstrate that the interaction of cytoplasmic microtubules with the Kar9p cortical attachment site requires the microtubule-binding protein Bim1p.


2007 ◽  
Vol 18 (4) ◽  
pp. 1187-1202 ◽  
Author(s):  
Jeffrey K. Moore ◽  
Rita K. Miller

During mitosis in the yeast Saccharomyces cerevisiae, Kar9p directs one spindle pole body (SPB) toward the incipient daughter cell by linking the associated set of cytoplasmic microtubules (cMTs) to the polarized actin network on the bud cortex. The asymmetric localization of Kar9p to one SPB and attached cMTs is dependent on its interactions with microtubule-associated proteins and is regulated by the yeast Cdk1 Cdc28p. Two phosphorylation sites in Kar9p were previously identified. Here, we propose that the two sites are likely to govern Kar9p function through separate mechanisms, each involving a distinct cyclin. In the first mechanism, phosphorylation at serine 496 recruits Kar9p to one SPB. A phosphomimetic mutation at serine 496 bypasses the requirement of BIK1 and CLB5 in generating Kar9p asymmetry. In the second mechanism, Clb4p may target serine 197 of Kar9p for phosphorylation. This modification is required for Kar9p to direct cMTs to the bud. Two-hybrid analysis suggests that this phosphorylation may attenuate the interaction between Kar9p and the XMAP215-homologue Stu2p. We propose that phosphorylation at serine 197 regulates the release of Kar9p from Stu2p at the SPB, either to clear it from the mother-SPB or to allow it to travel to the plus end.


2006 ◽  
Vol 17 (4) ◽  
pp. 1959-1970 ◽  
Author(s):  
Yasuhiro Araki ◽  
Corine K. Lau ◽  
Hiromi Maekawa ◽  
Sue L. Jaspersen ◽  
Thomas H. Giddings ◽  
...  

The spindle pole body (SPB) in Saccharomyces cerevisiae functions to nucleate and organize spindle microtubules, and it is embedded in the nuclear envelope throughout the yeast life cycle. However, the mechanism of membrane insertion of the SPB has not been elucidated. Ndc1p is an integral membrane protein that localizes to SPBs, and it is required for insertion of the SPB into the nuclear envelope during SPB duplication. To better understand the function of Ndc1p, we performed a dosage suppressor screen using the ndc1-39 temperature-sensitive allele. We identified an essential SPB component, Nbp1p. NBP1 shows genetic interactions with several SPB genes in addition to NDC1, and two-hybrid analysis revealed that Nbp1p binds to Ndc1p. Furthermore, Nbp1p is in the Mps2p-Bbp1p complex in the SPB. Immunoelectron microscopy confirmed that Nbp1p localizes to the SPB, suggesting a function at this location. Consistent with this hypothesis, nbp1-td (a degron allele) cells fail in SPB duplication upon depletion of Nbp1p. Importantly, these cells exhibit a “dead” SPB phenotype, similar to cells mutant in MPS2, NDC1, or BBP1. These results demonstrate that Nbp1p is a SPB component that acts in SPB duplication at the point of SPB insertion into the nuclear envelope.


Sign in / Sign up

Export Citation Format

Share Document