The Schizosaccharomyces pombe casein kinase II alpha and beta subunits: evolutionary conservation and positive role of the beta subunit

1994 ◽  
Vol 14 (1) ◽  
pp. 576-586
Author(s):  
I Roussou ◽  
G Draetta

Casein kinase II is a key regulatory enzyme involved in many cellular processes, including the control of growth and cell division. We report the molecular cloning and sequencing of cDNAs encoding the alpha and the beta subunits of casein kinase II of Schizosaccharomyces pombe. The deduced amino acid sequence of Cka1, the alpha catalytic subunit, shows high sequence similarity to alpha subunits identified in other species. The amino acid sequence of Ckb1, the S. pombe beta subunit, is 57% identical to that of the human beta subunit. Cka1 overexpression results in no detectable phenotype. In contrast, Ckb1 overexpression inhibits cell growth and cytokinesis, with formation of multiseptated cells. Disruption of the ckb1+ gene causes a cold-sensitive phenotype and abnormalities in cell shape. In these cells, the casein kinase II activity is reduced to undetectable levels, demonstrating that Ckb1 is required for enzyme activity in vivo. In agreement with this, the activity measured in a strain expressing high levels of Cka1 is enhanced only when the Ckb1 protein is coexpressed. Altogether, our data suggest that Ckb1 is a positive regulator of the enzyme activity, and that it plays a role in mediating the interaction of casein kinase II with downstream targets and/or with additional regulators.

1994 ◽  
Vol 14 (1) ◽  
pp. 576-586 ◽  
Author(s):  
I Roussou ◽  
G Draetta

Casein kinase II is a key regulatory enzyme involved in many cellular processes, including the control of growth and cell division. We report the molecular cloning and sequencing of cDNAs encoding the alpha and the beta subunits of casein kinase II of Schizosaccharomyces pombe. The deduced amino acid sequence of Cka1, the alpha catalytic subunit, shows high sequence similarity to alpha subunits identified in other species. The amino acid sequence of Ckb1, the S. pombe beta subunit, is 57% identical to that of the human beta subunit. Cka1 overexpression results in no detectable phenotype. In contrast, Ckb1 overexpression inhibits cell growth and cytokinesis, with formation of multiseptated cells. Disruption of the ckb1+ gene causes a cold-sensitive phenotype and abnormalities in cell shape. In these cells, the casein kinase II activity is reduced to undetectable levels, demonstrating that Ckb1 is required for enzyme activity in vivo. In agreement with this, the activity measured in a strain expressing high levels of Cka1 is enhanced only when the Ckb1 protein is coexpressed. Altogether, our data suggest that Ckb1 is a positive regulator of the enzyme activity, and that it plays a role in mediating the interaction of casein kinase II with downstream targets and/or with additional regulators.


1987 ◽  
Vol 84 (14) ◽  
pp. 4851-4855 ◽  
Author(s):  
K. Takio ◽  
E. A. Kuenzel ◽  
K. A. Walsh ◽  
E. G. Krebs

1988 ◽  
Vol 8 (11) ◽  
pp. 4981-4990
Author(s):  
J L Chen-Wu ◽  
R Padmanabha ◽  
C V Glover

Casein kinase II of Saccharomyces cerevisiae contains two distinct catalytic subunits, alpha and alpha', which must be encoded by separate genes (R. Padmanabha and C. V. C. Glover, J. Biol. Chem. 262:1829-1835, 1987). The gene encoding the 42-kilodalton alpha subunit has been isolated by screening a yeast genomic library with oligonucleotide probes synthesized on the basis of the N-terminal amino acid sequence of the polypeptide. This gene (designated CKA1) contains an intron-free open reading frame of 372 amino acid residues. The deduced amino acid sequence is 67% identical to the alpha subunit of Drosophila melanogaster casein kinase II. The CKA1 gene product appears to be distantly related to other known protein kinases but exhibits highest similarity to the CDC28 gene product and its homolog in other species. Gene replacement techniques have been used to generate a null cka1 mutant allele. Haploid and diploid strains lacking a functional CKA1 gene appear to be phenotypically wild type, presumably because of the presence of the alpha' gene. Interestingly, the CKA1 gene appears to be single copy in the yeast genome; i.e., the alpha' gene, whose existence is known from biochemical studies and protein sequencing, cannot be detected by low-stringency hybridization.


1987 ◽  
Vol 7 (10) ◽  
pp. 3409-3417 ◽  
Author(s):  
A Saxena ◽  
R Padmanabha ◽  
C V Glover

Cloned cDNAs encoding both subunits of Drosophila melanogaster casein kinase II have been isolated by immunological screening of lambda gt11 expression libraries, and the complete amino acid sequence of both polypeptides has been deduced by DNA sequencing. The alpha cDNA contained an open reading frame of 336 amino acid residues, yielding a predicted molecular weight for the alpha polypeptide of 39,833. The alpha sequence contained the expected semi-invariant residues present in the catalytic domain of previously sequenced protein kinases, confirming that it is the catalytic subunit of the enzyme. Pairwise homology comparisons between the alpha sequence and the sequences of a variety of vertebrate protein kinase suggested that casein kinase II is a distantly related member of the protein kinase family. The beta subunit was derived from an open reading frame of 215 amino acid residues and was predicted to have a molecular weight of 24,700. The beta subunit exhibited no extensive homology to other proteins whose sequences are currently known.


1987 ◽  
Vol 7 (10) ◽  
pp. 3409-3417
Author(s):  
A Saxena ◽  
R Padmanabha ◽  
C V Glover

Cloned cDNAs encoding both subunits of Drosophila melanogaster casein kinase II have been isolated by immunological screening of lambda gt11 expression libraries, and the complete amino acid sequence of both polypeptides has been deduced by DNA sequencing. The alpha cDNA contained an open reading frame of 336 amino acid residues, yielding a predicted molecular weight for the alpha polypeptide of 39,833. The alpha sequence contained the expected semi-invariant residues present in the catalytic domain of previously sequenced protein kinases, confirming that it is the catalytic subunit of the enzyme. Pairwise homology comparisons between the alpha sequence and the sequences of a variety of vertebrate protein kinase suggested that casein kinase II is a distantly related member of the protein kinase family. The beta subunit was derived from an open reading frame of 215 amino acid residues and was predicted to have a molecular weight of 24,700. The beta subunit exhibited no extensive homology to other proteins whose sequences are currently known.


1988 ◽  
Vol 8 (11) ◽  
pp. 4981-4990 ◽  
Author(s):  
J L Chen-Wu ◽  
R Padmanabha ◽  
C V Glover

Casein kinase II of Saccharomyces cerevisiae contains two distinct catalytic subunits, alpha and alpha', which must be encoded by separate genes (R. Padmanabha and C. V. C. Glover, J. Biol. Chem. 262:1829-1835, 1987). The gene encoding the 42-kilodalton alpha subunit has been isolated by screening a yeast genomic library with oligonucleotide probes synthesized on the basis of the N-terminal amino acid sequence of the polypeptide. This gene (designated CKA1) contains an intron-free open reading frame of 372 amino acid residues. The deduced amino acid sequence is 67% identical to the alpha subunit of Drosophila melanogaster casein kinase II. The CKA1 gene product appears to be distantly related to other known protein kinases but exhibits highest similarity to the CDC28 gene product and its homolog in other species. Gene replacement techniques have been used to generate a null cka1 mutant allele. Haploid and diploid strains lacking a functional CKA1 gene appear to be phenotypically wild type, presumably because of the presence of the alpha' gene. Interestingly, the CKA1 gene appears to be single copy in the yeast genome; i.e., the alpha' gene, whose existence is known from biochemical studies and protein sequencing, cannot be detected by low-stringency hybridization.


Sign in / Sign up

Export Citation Format

Share Document