Functional evidence for ligand-dependent dissociation of thyroid hormone and retinoic acid receptors from an inhibitory cellular factor

1994 ◽  
Vol 14 (9) ◽  
pp. 5756-5765
Author(s):  
J Casanova ◽  
E Helmer ◽  
S Selmi-Ruby ◽  
J S Qi ◽  
M Au-Fliegner ◽  
...  

The ligand-binding domains of thyroid hormone (L-triiodothyronine [T3]) receptors (T3Rs), all-trans retinoic acid (RA) receptors (RARs), and 9-cis RA receptors (RARs and RXRs) contain a series of heptad motifs thought to be important for dimeric interactions. Using a chimera containing amino acids 120 to 392 of chicken T3R alpha (cT3R alpha) positioned between the DNA-binding domain of the yeast GAL4 protein and the potent 90-amino-acid transactivating domain of the herpes simplex virus VP16 protein (GAL4-T3R-VP16), we provide functional evidence that binding of ligand releases T3Rs and RARs from an inhibitory cellular factor. GAL4-T3R-VP16 does not bind T3 and does not activate transcription from a GAL4 reporter when expressed alone but is able to activate transcription when coexpressed with unliganded T3R or RAR. This activation is reversed by T3 or RA, suggesting that these receptors compete with GAL4-T3R-VP16 for a cellular inhibitor and that ligand reverses this effect by dissociating T3R or RAR from the inhibitor. A chimera containing the entire ligand-binding domain of cT3R alpha (amino acids 120 to 408) linked to VP16 [GAL4-T3R(408)-VP16] is activated by unliganded receptor as well as by T3. In contrast, GAL4-T3R containing the amino acid 120 to 408 ligand-binding region without the VP16 domain is activated only by T3. The highly conserved ninth heptad, which is involved in heterodimerization, appears to participate in the receptor-inhibitor interaction, suggesting that the inhibitor is a related member of the receptor gene family. In striking contrast to T3R and RAR, RXR activates GAL4-T3R-VP16 only with its ligand, 9-cis RA, but unliganded RXR does not appear to be the inhibitor suggested by these studies. Further evidence that an orphan receptor may be the inhibitor comes from our finding that COUP-TF inhibits activation of GAL4-T3R-VP16 by unliganded T3R and the activation of GAL4-T3R by T3. These and other results suggest that an inhibitory factor suppresses transactivation by the T3Rs and RARs while these receptors are bound to DNA and that ligands act, in part, by inactivating or promoting dissociation of a receptor-inhibitor complex.

1994 ◽  
Vol 14 (9) ◽  
pp. 5756-5765 ◽  
Author(s):  
J Casanova ◽  
E Helmer ◽  
S Selmi-Ruby ◽  
J S Qi ◽  
M Au-Fliegner ◽  
...  

The ligand-binding domains of thyroid hormone (L-triiodothyronine [T3]) receptors (T3Rs), all-trans retinoic acid (RA) receptors (RARs), and 9-cis RA receptors (RARs and RXRs) contain a series of heptad motifs thought to be important for dimeric interactions. Using a chimera containing amino acids 120 to 392 of chicken T3R alpha (cT3R alpha) positioned between the DNA-binding domain of the yeast GAL4 protein and the potent 90-amino-acid transactivating domain of the herpes simplex virus VP16 protein (GAL4-T3R-VP16), we provide functional evidence that binding of ligand releases T3Rs and RARs from an inhibitory cellular factor. GAL4-T3R-VP16 does not bind T3 and does not activate transcription from a GAL4 reporter when expressed alone but is able to activate transcription when coexpressed with unliganded T3R or RAR. This activation is reversed by T3 or RA, suggesting that these receptors compete with GAL4-T3R-VP16 for a cellular inhibitor and that ligand reverses this effect by dissociating T3R or RAR from the inhibitor. A chimera containing the entire ligand-binding domain of cT3R alpha (amino acids 120 to 408) linked to VP16 [GAL4-T3R(408)-VP16] is activated by unliganded receptor as well as by T3. In contrast, GAL4-T3R containing the amino acid 120 to 408 ligand-binding region without the VP16 domain is activated only by T3. The highly conserved ninth heptad, which is involved in heterodimerization, appears to participate in the receptor-inhibitor interaction, suggesting that the inhibitor is a related member of the receptor gene family. In striking contrast to T3R and RAR, RXR activates GAL4-T3R-VP16 only with its ligand, 9-cis RA, but unliganded RXR does not appear to be the inhibitor suggested by these studies. Further evidence that an orphan receptor may be the inhibitor comes from our finding that COUP-TF inhibits activation of GAL4-T3R-VP16 by unliganded T3R and the activation of GAL4-T3R by T3. These and other results suggest that an inhibitory factor suppresses transactivation by the T3Rs and RARs while these receptors are bound to DNA and that ligands act, in part, by inactivating or promoting dissociation of a receptor-inhibitor complex.


2002 ◽  
Vol 22 (19) ◽  
pp. 6831-6841 ◽  
Author(s):  
Anna N. Moraitis ◽  
Vincent Giguère ◽  
Catherine C. Thompson

ABSTRACT Transcriptional regulation by nuclear receptors is controlled by the concerted action of coactivator and corepressor proteins. The product of the thyroid hormone-regulated mammalian gene hairless (Hr) was recently shown to function as a thyroid hormone receptor corepressor. Here we report that Hr acts as a potent repressor of transcriptional activation by RORα, an orphan nuclear receptor essential for cerebellar development. In contrast to other corepressor-nuclear receptor interactions, Hr binding to RORα is mediated by two LXXLL-containing motifs, a mechanism associated with coactivator interaction. Mutagenesis of conserved amino acids in the ligand binding domain indicates that RORα activity is ligand-dependent, suggesting that corepressor activity is maintained in the presence of ligand. Despite similar recognition helices shared with coactivators, Hr does not compete for the same molecular determinants at the surface of the RORα ligand binding domain, indicating that Hr-mediated repression is not simply through displacement of coactivators. Remarkably, the specificity of Hr corepressor action can be transferred to a retinoic acid receptor by exchanging the activation function 2 (AF-2) helix. Repression of the chimeric receptor is observed in the presence of retinoic acid, demonstrating that in this context, Hr is indeed a ligand-oblivious nuclear receptor corepressor. These results suggest a novel molecular mechanism for corepressor action and demonstrate that the AF-2 helix can play a dynamic role in controlling corepressor as well as coactivator interactions. The interaction of Hr with RORα provides direct evidence for the convergence of thyroid hormone and RORα-mediated pathways in cerebellar development.


1995 ◽  
Vol 15 (8) ◽  
pp. 4507-4517 ◽  
Author(s):  
E Hadzic ◽  
V Desai-Yajnik ◽  
E Helmer ◽  
S Guo ◽  
S Wu ◽  
...  

The effects of the thyroid hormone (3,5,3'-triiodo-L-thyronine [T3]) on gene transcription are mediated by nuclear T3 receptors (T3Rs). alpha- and beta-isoform T3Rs (T3R alpha and -beta) are expressed from different genes and are members of a superfamily of ligand-dependent transcription factors that also includes the receptors for steroid hormones, vitamin D, and retinoids. Although T3 activates transcription by mediating a conformational change in the C-terminal approximately 220-amino-acid ligand-binding domain (LBD), the fundamental mechanisms of T3R-mediated transcriptional activation remain to be determined. We found that deletion of the 50-amino-acid N-terminal A/B domain of chicken T3R alpha (cT3R alpha) decreases T3-dependent stimulation of genes regulated by native thyroid hormone response elements about 10- to 20-fold. The requirement of the A/B region for transcriptional activation was mapped to amino acids 21 to 30, which contain a cluster of five basic amino acids. The A/B region of cT3R alpha is not required for T3 binding or for DNA binding of the receptor as a heterodimer with retinoid X receptor. In vitro binding studies indicate that the N-terminal region of cT3R alpha interacts efficiently with TFIIB and that this interaction requires amino acids 21 to 30 of the A/B region. In contrast, the LBD interacts poorly with TFIIB. The region of TFIIB primarily involved in the binding of cT3R alpha includes an amphipathic alpha helix contained within residues 178 to 201. Analysis using a fusion protein containing the DNA-binding domain of GAL4 and the entire A/B region of cT3R alpha suggests that this region does not contain an intrinsic activation domain. These and other studies indicate that cT3R alpha mediates at least some of its effects through TFIIB in vivo and that the N-terminal region of DNA-bound cT3R alpha acts to recruit and/or stabilize the binding of TFIIB to the transcription complex. T3 stimulation could then result from ligand-mediated changes in the LBD which may lead to the interaction of other factors with cT3R alpha, TFIIB, and/or other components involved in the initiation of transcription.


1995 ◽  
Vol 15 (1) ◽  
pp. 76-86 ◽  
Author(s):  
A Baniahmad ◽  
X Leng ◽  
T P Burris ◽  
S Y Tsai ◽  
M J Tsai ◽  
...  

The C terminus of nuclear hormone receptors is a complex structure that contains multiple functions. We are interested in the mechanism by which thyroid hormone converts its receptor from a transcriptional silencer to an activator of transcription. Both regulatory functions are localized in the ligand binding domain of this receptor superfamily member. In this study, we have identified and characterized several functional domains within the ligand binding domain of the human thyroid hormone receptor (TR beta) conferring transactivation. Interestingly, these domains are localized adjacent to hormone binding sites. One activation domain, designated tau 4, is only 17 amino acids in length and is localized at the extreme C terminus of TR. Deletion of six amino acids of tau 4 resulted in a receptor that could still bind hormone but acted as a constitutive silencer, indicating that tau 4 is required for both transactivation and relief of the silencing functions. In addition, we performed in vivo competition experiments, the results of which suggest that in the absence of tau 4 or hormone, TR is bound by a corepressor protein(s) and that one role of hormone is to release corepressor from the receptor. We propose a general model in which the role of hormone is to induce a conformational change in the receptor that subsequently affects the action of tau 4, leading to both relief of silencing and transcriptional activation.


Author(s):  
Amir Taherkhani ◽  
Athena Orangi ◽  
Shirin Moradkhani ◽  
Zahra Khamverdi

Background: Matrix metalloproteinase-8 (MMP-8) participates in degradation of different types of collagens in the extracellular matrix and basement membrane. Up-regulation of the MMP-8 has been demonstrated in many of disorders including cancer development, tooth caries, periodontal/peri-implant soft and hard tissue degeneration, and acute/chronic inflammation. Therefore, MMP-8 has become an encouraging target for therapeutic procedures for scientists. We carried out molecular docking approach to study the binding affinity of 29 flavonoids, as drug candidates, with the MMP-8. Pharmacokinetic and toxicological properties of the compounds were also studied. Moreover, it was attempted to identify the most important amino acids participating in ligand binding based on degree of each of the amino acids in the ligand-amino acid interaction network for MMP-8. Methods: Three-dimensional structure of the protein was gained from the RCSB database (PDB ID: 4QKZ). AutoDock version 4.0 and Cytoscape 3.7.2 were used for molecular docking and network analysis, respectively. Notably, the inhibitor of the protein in the crystalline structure of the 4QKZ was considered as a control test. Pharmacokinetic and toxicological features of compounds were predicted using bioinformatic web tools. Post-docking analyses were performed using BIOVIA Discovery Studio Visualizer version 19.1.0.18287. Results and Discussions: According to results, 24 of the studied compounds considered to be top potential inhibitors for MMP-8 based on their salient estimated free energy of binding and inhibition constant as compared with the control test: Apigenin-7-glucoside, nicotiflorin, luteolin, glabridin, taxifolin, apigenin, licochalcone A, quercetin, isorhamnetin, myricetin, herbacetin, kaemferol, epicatechin, chrysin, amentoflavone, rutin, orientin, epiafzelechin, quercetin-3-rhamnoside, formononetin, isoliquiritigenin, vitexin, catechine, isoquercitrin. Moreover, His-197 was found to be the most important amino acid involved in the ligand binding for the enzyme. Conclusion: The results of the current study could be used in the prevention and therapeutic procedures of a number of disorders such as cancer progression and invasion, oral diseases, and acute/chronic inflammation. Although, in vitro and in vivo tests are inevitable in the future.


1990 ◽  
Vol 10 (10) ◽  
pp. 5128-5137 ◽  
Author(s):  
M M Witte ◽  
R C Dickson

LAC9 is a DNA-binding protein that regulates transcription of the lactose-galactose regulon in Kluyveromyces lactis. The DNA-binding domain is composed of a zinc finger and nearby amino acids (M. M. Witte and R. C. Dickson, Mol. Cell. Biol. 8:3726-3733, 1988). The single zinc finger appears to be structurally related to the zinc finger of many other fungal transcription activator proteins that contain positively charged residues and six conserved cysteines with the general form Cys-Xaa2-Cys-Xaa6-Cys-Xaa6-9-Cys-Xaa2-Cys-Xaa 6-Cys, where Xaan indicates a stretch of the indicated number of any amino acids (R. M. Evans and S. M. Hollenberg, Cell 52:1-3, 1988). The function(s) of the zinc finger and other amino acids in DNA-binding remains unclear. To determine which portion of the LAC9 DNA-binding domain mediates sequence recognition, we replaced the C6 zinc finger, amino acids adjacent to the carboxyl side of the zinc finger, or both with the analogous region from the Saccharomyces cerevisiae PPR1 or LEU3 protein. A chimeric LAC9 protein, LAC9(PPR1 34-61), carrying only the PPR1 zinc finger, retained the DNA-binding specificity of LAC9. However, LAC9(PPR1 34-75), carrying the PPR1 zinc finger and 14 amino acids on the carboxyl side of the zinc finger, gained the DNA-binding specificity of PPR1, indicating that these 14 amino acids are necessary for specific DNA binding. Our data show that C6 fingers can substitute for each other and allow DNA binding, but binding affinity is reduced. Thus, in a qualitative sense C6 fingers perform a similar function(s). However, the high-affinity binding required by natural C6 finger proteins demands a unique C6 finger with a specific amino acid sequence. This requirement may reflect conformational constraints, including interactions between the C6 finger and the carboxyl-adjacent amino acids; alternatively or in addition, it may indicate that unique, nonconserved amino acid residues in zinc fingers make sequence-specifying or stabilizing contacts with DNA.


1998 ◽  
Vol 12 (1) ◽  
pp. 34-44 ◽  
Author(s):  
Ying Liu ◽  
Akira Takeshita ◽  
Takashi Nagaya ◽  
Aria Baniahmad ◽  
William W. Chin ◽  
...  

Abstract We have employed a chimeric receptor system in which we cotransfected yeast GAL4 DNA-binding domain/retinoid X receptor β ligand-binding domain chimeric receptor (GAL4RXR), thyroid hormone receptor-β (TRβ), and upstream activating sequence-reporter plasmids into CV-1 cells to study repression, derepression, and transcriptional activation. In the absence of T3, unliganded TR repressed transcription to 20% of basal level, and in the presence of T3, liganded TRβ derepressed transcription to basal level. Using this system and a battery of TRβ mutants, we found that TRβ/RXR heterodimer formation is necessary and sufficient for basal repression and derepression in this system. Additionally, an AF-2 domain mutant (E457A) mediated basal repression but not derepression, suggesting that interaction with a putative coactivator at this site may be critical for derepression. Interestingly, a mutant containing only the TRβ ligand binding domain (LBD) not only mediated derepression, but also stimulated transcriptional activation 10-fold higher than basal level. Studies using deletion and domain swap mutants localized an inhibitory region to the TRβ DNA-binding domain. Titration studies further suggested that allosteric changes promoting interaction with coactivators may account for enhanced transcriptional activity by LBD. In summary, our findings suggest that TR heterodimer formation with RXR is important for repression and derepression, and coactivator interaction with the AF-2 domain may be needed for derepression in this chimeric system. Additionally, there may be an inhibitory region in the DNA-binding domain, which reduces TR interaction with coactivators, and prevents full-length wild-type TRβ from achieving transcriptional activation above basal level in this chimeric receptor system.


Sign in / Sign up

Export Citation Format

Share Document