scholarly journals Allele-specific suppression of a defective trans-Golgi network (TGN) localization signal in Kex2p identifies three genes involved in localization of TGN transmembrane proteins.

1996 ◽  
Vol 16 (11) ◽  
pp. 6208-6217 ◽  
Author(s):  
K Redding ◽  
J H Brickner ◽  
L G Marschall ◽  
J W Nichols ◽  
R S Fuller

Kex2 protease (Kex2p) and Ste13 dipeptidyl aminopeptidase (Ste13p) are required in Saccharomyces cerevisiae for maturation of the alpha-mating factor in a late Golgi compartment, most likely the yeast trans-Golgi network (TGN). Previous studies identified a TGN localization signal (TLS) in the C-terminal cytosolic tail of Kex2p consisting of Tyr-713 and contextual sequences. Further analysis of the Kex2p TLS revealed similarity to the Ste13p TLS. Mutation of the Kex2p TLS results in transport of Kex2p to the vacuole by default. When expression of a GAL1 promoter-driven KEX2 gene is shut off in MAT(alpha) cells, the TGN becomes depleted of Kex2p, resulting in a gradual decline in mating competence which is greatly accelerated by TLS mutations. To identify the genes involved in localization of Kex2p, we isolated second-site suppressors of the rapid loss of mating competence observed upon shutting off expression of a TLS mutant form of Kex2p (Y713A). Seven of 58 suppressors were allele specific, suppressing point mutations at Tyr-713 but not deletions of the TLS or entire C-terminal cytosolic tail. By linkage analysis, the allele-specific suppressors defined three genetic loci, SOI1, S0I2, and S0I3. Pulse-chase analysis demonstrated that these suppressors increased net TGN retention of both Y713A Kex2p and a Ste13p-Pho8p fusion protein containing a point mutation in the Ste13p TLS. SOI1 suppressor alleles reduced the efficiency of localization of wild-type Kex2p to the TGN, implying an impaired ability to discriminate between the normal TLS and a mutant TLS. soi1 mutants also exhibited a recessive defect in vacuolar protein sorting. Suppressor alleles of S0I2 were dominant. These results suggest that the SOI1 and S0I2 genes encode regulators or components of the TLS recognition machinery.

2004 ◽  
Vol 15 (7) ◽  
pp. 3196-3209 ◽  
Author(s):  
György Sipos ◽  
Jason H. Brickner ◽  
E.J. Brace ◽  
Linyi Chen ◽  
Alain Rambourg ◽  
...  

SOI3 was identified by a mutation, soi3-1, that suppressed a mutant trans-Golgi network (TGN) localization signal in the Kex2p cytosolic tail. SOI3, identical to RAV1, encodes a protein important for regulated assembly of vacuolar ATPase. Here, we show that Soi3/Rav1p is required for transport between the early endosome and the late endosome/prevacuolar compartment (PVC). By electron microscopy, soi3-1 mutants massively accumulated structures that resembled early endosomes. soi3Δ mutants exhibited a kinetic delay in transfer of the endocytic tracer dye FM4-64, from the 14°C endocytic intermediate to the vacuole. The soi3Δ mutation delayed vacuolar degradation but not internalization of the a-factor receptor Ste3p. By density gradient fractionation, Soi3/Rav1p associated as a peripheral protein with membranes of a density characteristic of early endosomes. The soi3 null mutation markedly reduced the rate of Kex2p transport from the TGN to the PVC but had no effect on vacuolar protein sorting or cycling of Vps10p. These results suggest that assembly of vacuolar ATPase at the early endosome is required for transport of both Ste3p and Kex2p from the early endosome to the PVC and support a model in which cycling through the early endosome is part of the normal itinerary of Kex2p and other TGN-resident proteins.


1999 ◽  
Vol 10 (1) ◽  
pp. 35-46 ◽  
Author(s):  
Francis J. Eng ◽  
Oleg Varlamov ◽  
Lloyd D. Fricker

Gp180, a duck protein that was proposed to be a cell surface receptor for duck hepatitis B virus, is the homolog of metallocarboxypeptidase D, a mammalian protein thought to function in the trans-Golgi network (TGN) in the processing of proteins that transit the secretory pathway. Both gp180 and mammalian metallocarboxypeptidase D are type I integral membrane proteins that contain a 58-residue cytosolic C-terminal tail that is highly conserved between duck and rat. To investigate the regions of the gp180 tail involved with TGN retention and intracellular trafficking, gp180 and various deletion and point mutations were expressed in the AtT-20 mouse pituitary corticotroph cell line. Full length gp180 is enriched in the TGN and also cycles to the cell surface. Truncation of the C-terminal 56 residues of the cytosolic tail eliminates the enrichment in the TGN and the retrieval from the cell surface. Truncation of 12–43 residues of the tail reduced retention in the TGN and greatly accelerated the turnover of the protein. In contrast, deletion of the C-terminal 45 residues, which truncates a potential YxxL-like sequence (FxxL), reduced the protein turnover and caused accumulation of the protein on the cell surface. A point mutation of the FxxL sequence to AxxL slowed internalization, showing that this element is important for retrieval from the cell surface. Mutation of a pair of casein kinase II sites within an acidic cluster showed that they are also important for trafficking. The present study demonstrates that multiple sequence elements within the cytoplasmic tail of gp180 participate in TGN localization.


1992 ◽  
Vol 283 (2) ◽  
pp. 313-316 ◽  
Author(s):  
B Reaves ◽  
A Wilde ◽  
G Banting

TGN38 is an integral membrane protein previously shown to be predominantly localized to the trans-Golgi network (TGN) of cells by virtue of a signal contained within its cytoplasmic ‘tail’ [Luzio, Brake, Banting, Howell, Braghetta & Stanley (1990) Biochem. J. 270, 97-102]. We now (i) describe the isolation of cDNA clones encoding an isoform of TGN38, (ii) present the sequence of that isoform and (iii) describe the production and use of antibodies which specifically recognize the new isoform. This isoform, designated TGN41, is also predominantly localized to the TGN. The only sequence differences between the protein coding regions of cDNA clones encoding TGN38 and those encoding TGN41 occur within the region specifying the cytoplasmic tails of the two proteins. The TGN localization signal is shown to be within the sequence common to both proteins.


2015 ◽  
Vol 170 (1) ◽  
pp. 211-219 ◽  
Author(s):  
Kentaro Fuji ◽  
Makoto Shirakawa ◽  
Yuki Shimono ◽  
Tadashi Kunieda ◽  
Yoichiro Fukao ◽  
...  

2019 ◽  
Vol 294 (39) ◽  
pp. 14406-14421 ◽  
Author(s):  
Anabelle Perrier ◽  
Ariane Bonnin ◽  
Lowiese Desmarets ◽  
Adeline Danneels ◽  
Anne Goffard ◽  
...  

2014 ◽  
Vol 55 (4) ◽  
pp. 764-772 ◽  
Author(s):  
Makoto Shirakawa ◽  
Haruko Ueda ◽  
Yasuko Koumoto ◽  
Kentaro Fuji ◽  
Chiaki Nishiyama ◽  
...  

Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 83-97
Author(s):  
Eric S Bensen ◽  
Giancarlo Costaguta ◽  
Gregory S Payne

Abstract Clathrin is involved in selective protein transport at the Golgi apparatus and the plasma membrane. To further understand the molecular mechanisms underlying clathrin-mediated protein transport pathways, we initiated a genetic screen for mutations that display synthetic growth defects when combined with a temperature-sensitive allele of the clathrin heavy chain gene (chc1-521) in Saccharomyces cerevisiae. Mutations, when present in cells with wild-type clathrin, were analyzed for effects on mating pheromone α-factor precursor maturation and sorting of the vacuolar protein carboxypeptidase Y as measures of protein sorting at the yeast trans-Golgi network (TGN) compartment. By these criteria, two classes of mutants were obtained, those with and those without defects in protein sorting at the TGN. One mutant with unaltered protein sorting at the TGN contains a mutation in PTC1, a type 2c serine/threonine phosphatase with widespread influences. The collection of mutants displaying TGN sorting defects includes members with mutations in previously identified vacuolar protein sorting genes (VPS), including the dynamin family member VPS1. Striking genetic interactions were observed by combining temperature-sensitive alleles of CHC1 and VPS1, supporting the model that Vps1p is involved in clathrin-mediated vesicle formation at the TGN. Also in the spectrum of mutants with TGN sorting defects are isolates with mutations in the following: RIC1, encoding a product originally proposed to participate in ribosome biogenesis; LUV1, encoding a product potentially involved in vacuole and microtubule organization; and INP53, encoding a synaptojanin-like inositol polyphosphate 5-phosphatase. Disruption of INP53, but not the related INP51 and INP52 genes, resulted in α-factor maturation defects and exacerbated α-factor maturation defects when combined with chc1-521. Our findings implicate a wide variety of proteins in clathrin-dependent processes and provide evidence for the selective involvement of Inp53p in clathrin-mediated protein sorting at the TGN.


2011 ◽  
Vol 286 (27) ◽  
pp. 24364-24373 ◽  
Author(s):  
Hiroaki Kajiho ◽  
Kyoko Sakurai ◽  
Tomohiro Minoda ◽  
Manabu Yoshikawa ◽  
Satoshi Nakagawa ◽  
...  

The small GTPase Rab5, which cycles between GDP-bound inactive and GTP-bound active forms, plays essential roles in membrane budding and trafficking in the early endocytic pathway. Rab5 is activated by various vacuolar protein sorting 9 (VPS9) domain-containing guanine nucleotide exchange factors. Rab21, Rab22, and Rab31 (members of the Rab5 subfamily) are also involved in the trafficking of early endosomes. Mechanisms controlling the activation Rab5 subfamily members remain unclear. RIN (Ras and Rab interactor) represents a family of multifunctional proteins that have a VPS9 domain in addition to Src homology 2 (SH2) and Ras association domains. We investigated whether RIN family members act as guanine nucleotide exchange factors (GEFs) for the Rab5 subfamily on biochemical and cell morphological levels. RIN3 stimulated the formation of GTP-bound Rab31 in cell-free and in cell GEF activity assays. RIN3 also formed enlarged vesicles and tubular structures, where it colocalized with Rab31 in HeLa cells. In contrast, RIN3 did not exhibit any apparent effects on Rab21. We also found that serine to alanine substitutions in the sequences between SH2 and RIN family homology domain of RIN3 specifically abolished its GEF action on Rab31 but not Rab5. We examined whether RIN3 affects localization of the cation-dependent mannose 6-phosphate receptor (CD-MPR), which is transported between trans-Golgi network and endocytic compartments. We found that RIN3 partially translocates CD-MPR from the trans-Golgi network to peripheral vesicles and that this is dependent on its Rab31-GEF activity. These results indicate that RIN3 specifically acts as a GEF for Rab31.


2001 ◽  
Vol 12 (2) ◽  
pp. 475-485 ◽  
Author(s):  
Olivier Deloche ◽  
Bonny G. Yeung ◽  
Gregory S. Payne ◽  
Randy Schekman

A native immunoisolation procedure has been used to investigate the role of clathrin-coated vesicles (CCVs) in the transport of vacuolar proteins between the trans-Golgi network (TGN) and the prevacuolar/endosome compartments in the yeast Saccharomyces cerevisiae. We find that Apl2p, one large subunit of the adaptor protein-1 complex, and Vps10p, the carboxypeptidase Y vacuolar protein receptor, are associated with clathrin molecules. Vps10p packaging in CCVs is reduced in pep12Δ andvps34Δ, two mutants that block Vps10p transport from the TGN to the endosome. However, Vps10p sorting is independent of Apl2p. Interestingly, a Vps10CtΔp mutant lacking its C-terminal cytoplasmic domain, the portion of the receptor responsible for carboxypeptidase Y sorting, is also coimmunoprecipitated with clathrin. Our results suggest that CCVs mediate Vps10p transport from the TGN to the endosome independent of direct interactions between Vps10p and clathrin coats. The Vps10p C-terminal domain appears to play a principal role in retrieval of Vps10p from the prevacuolar compartment rather than in sorting from the TGN.


Sign in / Sign up

Export Citation Format

Share Document