scholarly journals Extensive mutagenesis of a transcriptional activation domain identifies single hydrophobic and acidic amino acids important for activation in vivo.

1997 ◽  
Vol 17 (1) ◽  
pp. 115-122 ◽  
Author(s):  
M B Sainz ◽  
S A Goff ◽  
V L Chandler

C1 is a transcriptional activator of genes encoding biosynthetic enzymes of the maize anthocyanin pigment pathway. C1 has an amino terminus homologous to Myb DNA-binding domains and an acidic carboxyl terminus that is a transcriptional activation domain in maize and yeast cells. To identify amino acids critical for transcriptional activation, an extensive random mutagenesis of the C1 carboxyl terminus was done. The C1 activation domain is remarkably tolerant of amino acid substitutions, as changes at 34 residues had little or no effect on transcriptional activity. These changes include introduction of helix-incompatible amino acids throughout the C1 activation domain and alteration of most single acidic amino acids, suggesting that a previously postulated amphipathic alpha-helix is not required for activation. Substitutions at two positions revealed amino acids important for transcriptional activation. Replacement of leucine 253 with a proline or glutamine resulted in approximately 10% of wild-type transcriptional activation. Leucine 253 is in a region of C1 in which several hydrophobic residues align with residues important for transcriptional activation by the herpes simplex virus VP16 protein. However, changes at all other hydrophobic residues in C1 indicate that none are critical for C1 transcriptional activation. The other important amino acid in C1 is aspartate 262, as a change to valine resulted in only 24% of wild-type transcriptional activation. Comparison of our C1 results with those from VP16 reveal substantial differences in which amino acids are required for transcriptional activation in vivo by these two acidic activation domains.

1998 ◽  
Vol 71 (2) ◽  
pp. 127-132 ◽  
Author(s):  
TATJANA SINGER ◽  
ALFONS GIERL ◽  
PETER A. PETERSON

Three new dominant suppressor mutations of the C1 transcription regulator gene in maize – C1-IΔ1, C1-IΔ2 and C1-IΔ3 – are described that suppress anthocyanin colouration in kernels similar to the function of the C1-I standard inhibitor. The C1-IΔ mutations were induced by imprecise excision of an En/Spm transposon in the third exon of the C1 gene. These transposon footprints cause a frameshift in the C1 open reading frame that leads to truncated proteins due to an early stop codon 30 amino acids upstream of the wild-type C1 protein. Therefore, the C1-IΔ gene products lack the carboxy-terminal transcriptional activation domain of C1. The C1-I standard allele also lacks this domain and in addition differs in 17 amino acids from the wild-type C1 allele. The new C1-IΔ alleles provide evidence that deletion of the carboxy-terminal activation domain alone is sufficient to generate a dominant suppressive effect on the function of wild-type C1.


1996 ◽  
Vol 16 (10) ◽  
pp. 5557-5571 ◽  
Author(s):  
B M Jackson ◽  
C M Drysdale ◽  
K Natarajan ◽  
A G Hinnebusch

GCN4 is a transcriptional activator in the bZIP family that regulates amino acid biosynthetic genes in the yeast Saccharomyces cerevisiae. The N-terminal 100 amino acids of GCN4 contains a potent activation function that confers high-level transcription in the absence of the centrally located acidic activation domain (CAAD) delineated in previous studies. To identify specific amino acids important for activation by the N-terminal domain, we mutagenized a GCN4 allele lacking the CAAD and screened alleles in vivo for reduced expression of the HIS3 gene. We found four pairs of closely spaced phenylalanines and a leucine residue distributed throughout the N-terminal 100 residues of GCN4 that are required for high-level activation in the absence of the CAAD. Trp, Leu, and Tyr were highly functional substitutions for the Phe residue at position 45. Combined with our previous findings, these results indicate that GCN4 contains seven clusters of aromatic or bulky hydrophobic residues which make important contributions to transcriptional activation at HIS3. None of the seven hydrophobic clusters is essential for activation by full-length GCN4, and the critical residues in two or three clusters must be mutated simultaneously to observe a substantial reduction in GCN4 function. Numerous combinations of four or five intact clusters conferred high-level transcription of HIS3. We propose that many of the hydrophobic clusters in GCN4 act independently of one another to provide redundant means of stimulating transcription and that the functional contributions of these different segments are cumulative at the HIS3 promoter. On the basis of the primacy of bulky hydrophobic residues throughout the activation domain, we suggest that GCN4 contains multiple sites that mediate hydrophobic contacts with one or more components of the transcription initiation machinery.


1991 ◽  
Vol 11 (2) ◽  
pp. 935-944 ◽  
Author(s):  
J L Paluh ◽  
C Yanofsky

CPC1 is the transcriptional activator of amino acid biosynthetic genes of Neurospora crassa. CPC1 function in vivo was abolished upon deletion of segments of cpc-1 corresponding to the presumed transcription activation domain, the DNA-binding and dimerization domains, or a 52-residue connector segment of CPC1. A truncated CPC1 polypeptide containing only the carboxy-terminal 57-residue segment of CPC1 was sufficient to form homodimers that bound DNA. However, deletion of the segment of cpc-1 corresponding to the connector segment in the full-length CPC1 polypeptide abolished DNA binding. Removal of a segment of cpc-1 corresponding to the GIn-rich region of CPC1 reduced in vivo function only slightly. The homologous transcription activator of Saccharomyces cerevisiae, GCN4, did not substitute for CPC1 in N. crassa. Chimeric CPC1-GCN4 polypeptides that contained the GCN4 transcriptional activation domain or the domain of GCN4 that corresponds to the essential 52-residue connector segment of CPC1, functioned with reduced efficiency. However, a chimeric polypeptide containing the GCN4 DNA-binding and dimerization domains in place of those of CPC1 functioned essentially as well as wild-type CPC1. The basic and dimerization domains of CPC1 were characterized by introducing deletions or site-directed amino acid replacements. The basic region was required for DNA binding but not for dimerization. CPC1 has a short dimerization domain containing heptad residues Leu-1, Leu-2, Trp-3, and His-4. When Val was substituted for Leu-1 or Leu-2, CPC1 was fully active, but when Val replaced Trp-3, dimerization and DNA binding were prevented. DNA band shift analyses with CPC1 heterodimers demonstrated that CPC1 does not require aligned heptad leucine residues for dimerization. Replacement of two charged residues located between Leu-1 and Leu-2 of CPC1 abolished dimerization and DNA binding.


2002 ◽  
Vol 83 (3) ◽  
pp. 517-524 ◽  
Author(s):  
Nikita Avvakumov ◽  
Majdina Sahbegovic ◽  
Zhiying Zhang ◽  
Michael Shuen ◽  
Joe S. Mymryk

Adenovirus type 5 E1A proteins interact with cellular regulators of transcription to reprogram gene expression in the infected or transformed cell. Although E1A also interacts with DNA directly in vitro, it is not clear how this relates to its function in vivo. The N-terminal conserved regions 1, 2 and 3 and the C-terminal portions of E1A were prepared as purified recombinant proteins and analyses showed that only the C-terminal region bound DNA in vitro. Deletion of E1A amino acids 201–220 inhibited binding and a minimal fragment encompassing amino acids 201–218 of E1A was sufficient for binding single- and double-stranded DNA. This portion of E1A also bound the cation-exchange resins cellulose phosphate and carboxymethyl Sepharose. As this region contains six basic amino acids, in vitro binding of E1A to DNA probably results from an ionic interaction with the phosphodiester backbone of DNA. Studies in Saccharomyces cerevisiae have shown that expression of a strong transcriptional activation domain fused to a DNA-binding domain can inhibit growth. Although fusion of the C-terminal region of E1A to a strong transcriptional activation domain inhibited growth when expressed in yeast, this was not mediated by the DNA-binding domain identified in vitro. These data suggest that E1A does not bind DNA in vivo.


1991 ◽  
Vol 11 (2) ◽  
pp. 935-944
Author(s):  
J L Paluh ◽  
C Yanofsky

CPC1 is the transcriptional activator of amino acid biosynthetic genes of Neurospora crassa. CPC1 function in vivo was abolished upon deletion of segments of cpc-1 corresponding to the presumed transcription activation domain, the DNA-binding and dimerization domains, or a 52-residue connector segment of CPC1. A truncated CPC1 polypeptide containing only the carboxy-terminal 57-residue segment of CPC1 was sufficient to form homodimers that bound DNA. However, deletion of the segment of cpc-1 corresponding to the connector segment in the full-length CPC1 polypeptide abolished DNA binding. Removal of a segment of cpc-1 corresponding to the GIn-rich region of CPC1 reduced in vivo function only slightly. The homologous transcription activator of Saccharomyces cerevisiae, GCN4, did not substitute for CPC1 in N. crassa. Chimeric CPC1-GCN4 polypeptides that contained the GCN4 transcriptional activation domain or the domain of GCN4 that corresponds to the essential 52-residue connector segment of CPC1, functioned with reduced efficiency. However, a chimeric polypeptide containing the GCN4 DNA-binding and dimerization domains in place of those of CPC1 functioned essentially as well as wild-type CPC1. The basic and dimerization domains of CPC1 were characterized by introducing deletions or site-directed amino acid replacements. The basic region was required for DNA binding but not for dimerization. CPC1 has a short dimerization domain containing heptad residues Leu-1, Leu-2, Trp-3, and His-4. When Val was substituted for Leu-1 or Leu-2, CPC1 was fully active, but when Val replaced Trp-3, dimerization and DNA binding were prevented. DNA band shift analyses with CPC1 heterodimers demonstrated that CPC1 does not require aligned heptad leucine residues for dimerization. Replacement of two charged residues located between Leu-1 and Leu-2 of CPC1 abolished dimerization and DNA binding.


1987 ◽  
Vol 7 (1) ◽  
pp. 294-304 ◽  
Author(s):  
D Pilgrim ◽  
E T Young

Alcohol dehydrogenase isoenzyme III (ADH III) in Saccharomyces cerevisiae, the product of the ADH3 gene, is located in the mitochondrial matrix. The ADH III protein was synthesized as a larger precursor in vitro when the gene was transcribed with the SP6 promoter and translated with a reticulocyte lysate. A precursor of the same size was detected when radioactively pulse-labeled proteins were immunoprecipitated with anti-ADH antibody. This precursor was rapidly processed to the mature form in vivo with a half-time of less than 3 min. The processing was blocked if the mitochondria were uncoupled with carbonyl cyanide m-chlorophenylhydrazone. Mutant enzymes in which only the amino-terminal 14 or 16 amino acids of the presequence were retained were correctly targeted and imported into the matrix. A mutant enzyme that was missing the amino-terminal 17 amino acids of the presequence produced an active enzyme, but the majority of the enzyme activity remained in the cytoplasmic compartment on cellular fractionation. Random amino acid changes were produced in the wild-type presequence by bisulfite mutagenesis of the ADH3 gene. The resulting ADH III protein was targeted to the mitochondria and imported into the matrix in all of the mutants tested, as judged by enzyme activity. Mutants containing amino acid changes in the carboxyl-proximal half of the ADH3 presequence were imported and processed to the mature form at a slower rate than the wild type, as judged by pulse-chase studies in vivo. The unprocessed precursor appeared to be unstable in vivo. It was concluded that only a small portion of the presequence contains the necessary information for correct targeting and import. Furthermore, the information for correct proteolytic processing of the presequence appears to be distinct from the targeting information and may involve secondary structure information in the presequence.


1994 ◽  
Vol 14 (9) ◽  
pp. 6056-6067
Author(s):  
M Tanaka ◽  
W Herr

The POU domain activator Oct-2 contains an N-terminal glutamine-rich transcriptional activation domain. An 18-amino-acid segment (Q18III) from this region reconstituted a fully functional activation domain when tandemly reiterated and fused to either the Oct-2 or GAL4 DNA-binding domain. A minimal transcriptional activation domain likely requires three tandem Q18III segments, because one or two tandem Q18III segments displayed little activity, whereas three to five tandem segments were active and displayed increasing activity with increasing copy number. As with natural Oct-2 activation domains, in our assay a reiterated activation domain required a second homologous or heterologous activation domain to stimulate transcription effectively when fused to the Oct-2 POU domain. These results suggest that there are different levels of synergy within and among activation domains. Analysis of reiterated activation domains containing mutated Q18III segments revealed that leucines and glutamines, but not serines or threonines, are critical for activity in vivo. Curiously, several reiterated activation domains that were inactive in vivo were active in vitro, suggesting that there are significant functional differences in our in vivo and in vitro assays. Reiteration of a second 18-amino-acid segment from the Oct-2 glutamine-rich activation domain (Q18II) was also active, but its activity was DNA-binding domain specific, because it was active when fused to the GAL4 than to the Oct-2 DNA-binding domain. The ability of separate short peptide segments derived from a single transcriptional activation domain to activate transcription after tandem reiteration emphasizes the flexible and modular nature of a transcriptional activation domain.


1988 ◽  
Vol 255 (3) ◽  
pp. F397-F407 ◽  
Author(s):  
W. H. Dantzler ◽  
S. Silbernagl

Amino acid transport by juxtamedullary (JM) nephrons and its relationship to transport by superficial cortical (SC) nephrons and to function of vasa recta and collecting ducts were examined in vivo and in situ by free-flow micropuncture of Henle's loops, collecting ducts, and vasa recta and by continuous microinfusion of Henle's loops in exposed rat papillae. Fractional deliveries (FDs) of six neutral amino acids, two acidic amino acids, and taurine to tips of Henle's loops of JM nephrons could be substantially below those to early distal loops of SC nephrons, indicating that reabsorption before loop tips could be greater in JM than in SC nephrons. FDs to collecting ducts lower than to JM loop tips suggested reabsorption distal to loop tips. This was confirmed by continuous microinfusion of ascending limbs of Henle's loops. Distal site of reabsorption is unknown, but amino acids may move passively out of the thin ascending limb and be recycled into vasa recta and descending limb. Recycling of amino acids was supported by high FDs to tips of Henle's loops (sometimes greater than 1.0), higher concentrations in ascending than in descending vasa recta at same papilla level, and high mean concentrations in vasa recta.


1998 ◽  
Vol 18 (3) ◽  
pp. 1711-1724 ◽  
Author(s):  
Connie M. Drysdale ◽  
Belinda M. Jackson ◽  
Richard McVeigh ◽  
Edward R. Klebanow ◽  
Yu Bai ◽  
...  

ABSTRACT The Gcn4p activation domain contains seven clusters of hydrophobic residues that make additive contributions to transcriptional activation in vivo. We observed efficient binding of a glutathioneS-transferase (GST)–Gcn4p fusion protein to components of three different coactivator complexes in Saccharomyces cerevisiae cell extracts, including subunits of transcription factor IID (TFIID) (yeast TAFII20 [yTAFII20], yTAFII60, and yTAFII90), the holoenzyme mediator (Srb2p, Srb4p, and Srb7p), and the Adap-Gcn5p complex (Ada2p and Ada3p). The binding to these coactivator subunits was completely dependent on the hydrophobic clusters in the Gcn4p activation domain. Alanine substitutions in single clusters led to moderate reductions in binding, double-cluster substitutions generally led to greater reductions in binding than the corresponding single-cluster mutations, and mutations in four or more clusters reduced binding to all of the coactivator proteins to background levels. The additive effects of these mutations on binding of coactivator proteins correlated with their cumulative effects on transcriptional activation by Gcn4p in vivo, particularly with Ada3p, suggesting that recruitment of these coactivator complexes to the promoter is a cardinal function of the Gcn4p activation domain. As judged by immunoprecipitation analysis, components of the mediator were not associated with constituents of TFIID and Adap-Gcn5p in the extracts, implying that GST-Gcn4p interacted with the mediator independently of these other coactivators. Unexpectedly, a proportion of Ada2p coimmunoprecipitated with yTAFII90, and the yTAFII20, -60, and -90 proteins were coimmunoprecipitated with Ada3p, revealing a stable interaction between components of TFIID and the Adap-Gcn5p complex. Because GST-Gcn4p did not bind specifically to highly purified TFIID, Gcn4p may interact with TFIID via the Adap-Gcn5p complex or some other adapter proteins. The ability of Gcn4p to interact with several distinct coactivator complexes that are physically and genetically linked to TATA box-binding protein can provide an explanation for the observation that yTAFII proteins are dispensable for activation by Gcn4p in vivo.


Genetics ◽  
1990 ◽  
Vol 125 (1) ◽  
pp. 21-27 ◽  
Author(s):  
J M Salmeron ◽  
K K Leuther ◽  
S A Johnston

Abstract The carboxy-terminal 28 amino acids of the Saccharomyces cerevisiae transcriptional activator protein GAL4 execute two functions--transcriptional activation and interaction with the negative regulatory protein, GAL80. Here we demonstrate that these two functions are separable by single amino acid changes within this region. We determined the sequences of four GAL4C-mutations, and characterized the abilities of the encoded GAL4C proteins to activate transcription of the galactose/melibiose regulon in the presence of GAL80 and superrepressible GAL80S alleles. One of the GAL4C mutations can be compensated by a specific GAL80S mutation, resulting in a wild-type phenotype. These results support the idea that while the GAL4 activation function tolerates at least minor alterations in the GAL4 carboxyl terminus, the GAL80-interactive function is highly sequence-specific and sensitive even to single amino acid alterations. They also argue that the GAL80S mutations affect the affinity of GAL80 for GAL4, and not the ability of GAL80 to bind inducer.


Sign in / Sign up

Export Citation Format

Share Document