scholarly journals Postfertilization deadenylation of mRNAs in Xenopus laevis embryos is sufficient to cause their degradation at the blastula stage.

1997 ◽  
Vol 17 (1) ◽  
pp. 209-218 ◽  
Author(s):  
Y Audic ◽  
F Omilli ◽  
H B Osborne

Although the maternal Xenopus laevis Eg mRNAs are deadenylated after fertilization, they are not immediately degraded and they persist in the embryos as poly(A)- transcripts. The degradation of these RNAs is not detected until the blastula stage of development (6 to 7 h postfertilization). To understand the basis for this delay between deadenylation and degradation, it is necessary to identify the cis-acting element(s) required to trigger degradation in blastula stage embryos. To this end, several chimeric RNAs containing different portions of the 3' untranslated region of Eg2 mRNA were injected into two-cell X. laevis embryos. We observed that only the RNAs that contained the cis-acting elements that confer rapid deadenylation were subsequently degraded at the blastula stage. This suggested that deadenylation may be sufficient to trigger degradation. By injecting chimeric RNAs devoid of Eg sequence information, we further showed that only deadenylated RNAs were degraded in X. laevis embryos. Last, introduction of a functional cytoplasmic polyadenylation element into a poly(A)- RNA, thereby causing its polyadenylation after injection into embryos, protected the RNA from degradation. Hence, in X. laevis embryos, the postfertilization deadenylation of maternal Eg mRNAs is sufficient to cause the degradation of an mRNA, which, however, only becomes apparent at the blastula stage. Possible causes for this delay between deadenylation and degradation are discussed in the light of these results.

1994 ◽  
Vol 14 (3) ◽  
pp. 1893-1900
Author(s):  
P Bouvet ◽  
F Omilli ◽  
Y Arlot-Bonnemains ◽  
V Legagneux ◽  
C Roghi ◽  
...  

The maternal Xenopus Eg mRNAs are adenylated and translated in the mature oocyte and then, after fertilization, are deadenylated and released from polysomes. Therefore, after fertilization, a change occurs in the cellular mechanisms that control mRNA adenylation. In the study reported here, we show that the 3' untranslated region of Eg2 mRNA contains a cis-acting element that is required for the deadenylation of chimeric RNAs after fertilization. This cis-acting element is contained within a single 17-nucleotide portion of the Eg2 mRNA. Disruption of this deadenylation element allows adenylation of the chimeric transcripts in the embryo. Therefore, this cis-acting element is part of the sequence information required for the developmental switch from adenylation to deadenylation of the maternal Eg2 mRNA in Xenopus embryos.


1994 ◽  
Vol 14 (3) ◽  
pp. 1893-1900 ◽  
Author(s):  
P Bouvet ◽  
F Omilli ◽  
Y Arlot-Bonnemains ◽  
V Legagneux ◽  
C Roghi ◽  
...  

The maternal Xenopus Eg mRNAs are adenylated and translated in the mature oocyte and then, after fertilization, are deadenylated and released from polysomes. Therefore, after fertilization, a change occurs in the cellular mechanisms that control mRNA adenylation. In the study reported here, we show that the 3' untranslated region of Eg2 mRNA contains a cis-acting element that is required for the deadenylation of chimeric RNAs after fertilization. This cis-acting element is contained within a single 17-nucleotide portion of the Eg2 mRNA. Disruption of this deadenylation element allows adenylation of the chimeric transcripts in the embryo. Therefore, this cis-acting element is part of the sequence information required for the developmental switch from adenylation to deadenylation of the maternal Eg2 mRNA in Xenopus embryos.


Development ◽  
1977 ◽  
Vol 37 (1) ◽  
pp. 13-31
Author(s):  
Marie Dziadek ◽  
K. E. Dixon

Microinjection of [3H]thymidine into Xenopus laevis embryos between late blastula (stage 10) and early tadpole (stage 44) showed that the presumptive primordial germ cells synthesise DNA between stages 10–33. The percentage of labelled cells was highest between stages 10 and 16, declined sharply between stages 22 and 26 and rose again between stages 26 and 33. The fluctuations in the labelling patterns together with increase in the number of presumptive primordial germ cells and direct observation of germ cells in mitosis suggested that the germ cells divide three times between stages 10 and 44. The first divisions probably take place during gastrulation (stages 10–12), the second relatively synchronously at about stages 22–24 and the third series again relatively synchronously about stages 37–39. This period of proliferative activity is distinguishable on the one hand from the cleavage divisions in which the number of germ cells does not increase and on the other hand from the next proliferative phase by a period of mitotic inactivity. Microinjection of [3H]uridine showed that the presumptive primordial germ cells synthesize RNA only in mid-gastrula to early tail-bud-stage embryos. There is no obvious simple causal relationship between RNA synthesis and the movement of the germ plasm to the nucleus, or with division of the germ cells or with their migration out of the endoderm.


Development ◽  
1986 ◽  
Vol 97 (Supplement) ◽  
pp. 65-73
Author(s):  
Janet Heasman ◽  
Alison Snape ◽  
J. C. Smith ◽  
C. C. Wylie

Fate maps of the late blastula stage of the Xenopus laevis embryo indicate that the cells of the vegetal pole area are destined to become part of the endoderm germ layer (Keller, 1975; Heasman, Wylie, Hausen & Smith, 1984). By labelling single cells from this region and transplanting them into the blastocoel cavity of host embryos, we have shown that the determinative process that restricts blastomeres to this their normal fate occurs between the early blastula and early gastrula stages (Heasman et al. 1984). To progress towards an understanding of this process, we need to establish some fundamental points. In particular, the following issues are discussed here. (1) Is cell interaction required for determination to proceed? (2) What is the cellular nature of determination? We have used the labelling and transplantation technique described previously (Heasman, Snape, Smith & Wylie, 1985; Heasman, Snape, Smith, Holwill & Wylie, 1985) to study these questions in relation to the mechanism of determination of vegetal pole cells in Xenopus laevis.


1991 ◽  
Vol 11 (1) ◽  
pp. 299-308 ◽  
Author(s):  
N J Marini ◽  
R M Benbow

Circular plasmid DNA molecules and linear concatemers formed from the same plasmid exhibit strikingly different fates following microinjection into Xenopus laevis embryos. In this report, we prove quantitatively that only a minority of small, circular DNA molecules were replicated (mean = 14%) from fertilization through the blastula stage of development. At all concentrations tested, very few molecules (approximately 1%) underwent more than one round of DNA synthesis within these multiple cell cycles. In addition, unlike endogenous chromatin, the majority of circular templates became resistant to cleavage by micrococcal nuclease. The extent of nuclease resistance was similar for both replicated and unreplicated templates. Sequestration of circular molecules within a membranous compartment (pseudonucleus), rather than the formation of nucleosomes with abnormal size or spacing, apparently conferred the nuclease resistance. In contrast, most linearly concatenated DNA molecules (derived from end-to-end joining of microinjected monomeric plasmid DNA) underwent at least two rounds of DNA replication during this same period. Linear concatemers also exhibited micrococcal nuclease digestion patterns similar to those seen for endogenous chromatin yet, as judged by their failure to persist in later stages of embryogenesis, were likely to be replicated and maintained extrachromosomally. We propose, therefore, that template size and conformation determine the efficiency of replication of microinjected plasmid DNA by directing DNA to a particular compartment within the cell following injection. Template-dependent compartmentalization may result from differential localization within endogenous nuclei versus extranuclear compartments or from supramolecular assembly processes that depend on template configuration (e.g., association with nuclear matrix or nuclear envelope).


1991 ◽  
Vol 11 (1) ◽  
pp. 299-308
Author(s):  
N J Marini ◽  
R M Benbow

Circular plasmid DNA molecules and linear concatemers formed from the same plasmid exhibit strikingly different fates following microinjection into Xenopus laevis embryos. In this report, we prove quantitatively that only a minority of small, circular DNA molecules were replicated (mean = 14%) from fertilization through the blastula stage of development. At all concentrations tested, very few molecules (approximately 1%) underwent more than one round of DNA synthesis within these multiple cell cycles. In addition, unlike endogenous chromatin, the majority of circular templates became resistant to cleavage by micrococcal nuclease. The extent of nuclease resistance was similar for both replicated and unreplicated templates. Sequestration of circular molecules within a membranous compartment (pseudonucleus), rather than the formation of nucleosomes with abnormal size or spacing, apparently conferred the nuclease resistance. In contrast, most linearly concatenated DNA molecules (derived from end-to-end joining of microinjected monomeric plasmid DNA) underwent at least two rounds of DNA replication during this same period. Linear concatemers also exhibited micrococcal nuclease digestion patterns similar to those seen for endogenous chromatin yet, as judged by their failure to persist in later stages of embryogenesis, were likely to be replicated and maintained extrachromosomally. We propose, therefore, that template size and conformation determine the efficiency of replication of microinjected plasmid DNA by directing DNA to a particular compartment within the cell following injection. Template-dependent compartmentalization may result from differential localization within endogenous nuclei versus extranuclear compartments or from supramolecular assembly processes that depend on template configuration (e.g., association with nuclear matrix or nuclear envelope).


1999 ◽  
Vol 19 (6) ◽  
pp. 3958-3968 ◽  
Author(s):  
John Strouboulis ◽  
Sashko Damjanovski ◽  
Danielle Vermaak ◽  
Funda Meric ◽  
Alan P. Wolffe

ABSTRACT The Polycomb group (Pc-G) genes encode proteins that assemble into complexes implicated in the epigenetic maintenance of heritable patterns of expression of developmental genes, a function largely conserved from Drosophila to mammals and plants. The Pc-G is thought to act at the chromatin level to silence expression of target genes; however, little is known about the molecular basis of this repression. In keeping with the evidence that Pc-G homologs in higher vertebrates exist in related pairs, we report here the isolation of XPc1, a second Polycomb homolog in Xenopus laevis. We show that XPc1 message is maternally deposited in a translationally masked form in Xenopus oocytes, with XPc1 protein first appearing in embryonic nuclei shortly after the blastula stage. XPc1 acts as a transcriptional repressor in vivo when tethered to a promoter in Xenopus embryos. We find that XPc1-mediated repression can be only partially alleviated by an increase in transcription factor dosage and that inhibition of deacetylase activity by trichostatin A treatment has no effect on XPc1 repression, suggesting that histone deacetylation does not form the basis for Pc-G-mediated repression in our assay.


2019 ◽  
Vol 14 (2) ◽  
pp. 196-213
Author(s):  
Patrizia Bonfanti ◽  
Anita Colombo ◽  
Melissa Saibene ◽  
Luisa Fiandra ◽  
Ilaria Armenia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document