scholarly journals Modulated Expression of the Epidermal Growth Factor-Like Homeotic Protein dlk Influences Stromal-Cell–Pre-B-Cell Interactions, Stromal Cell Adipogenesis, and Pre-B-Cell Interleukin-7 Requirements

1998 ◽  
Vol 18 (9) ◽  
pp. 5247-5255 ◽  
Author(s):  
Steven R. Bauer ◽  
María José Ruiz-Hidalgo ◽  
Eva K. Rudikoff ◽  
Julia Goldstein ◽  
Jorge Laborda

ABSTRACT A close relationship exists between adipocyte differentiation of stromal cells and their capacity to support hematopoiesis. The molecular basis for this is unknown. We have studied whether dlk, an epidermal growth factor-like molecule that intervenes in adipogenesis and fetal liver hematopoiesis, affects both stromal cell adipogenesis and B-cell lymphopoiesis in an established pre-B-cell culture system. Pre-B-cell cultures require both soluble interleukin-7 (IL-7) and interactions with stromal cells to promote cell growth and prevent B-cell maturation or apoptosis. We found that BALB/c 3T3 fibroblasts express dlk and function as stromal cells. Transfection of these cells with antisense dlk decreased dlk expression and increased insulin-induced adipocytic differentiation. When antisense transfectants were used as stroma, IL-7 was no longer required to support the growth of pre-B cells and prevent maturation or apoptosis. Antisense dlk transfectants of S10 stromal cells also promoted pre-B-cell growth in the absence of IL-7. These results show that modulation of dlk on stromal cells can influence their adipogenesis and the IL-7 requirements of the pre-B cells growing in contact with them. These results indicate that dlk influences differentiation signals directed both to the stromal cells and to the lymphocyte precursors, suggesting that dlk may play an important role in the bone marrow hematopoietic environment.

Blood ◽  
1993 ◽  
Vol 82 (10) ◽  
pp. 3005-3011 ◽  
Author(s):  
LF Gibson ◽  
D Piktel ◽  
KS Landreth

Abstract Commitment to B-lymphocyte differentiation is characterized by expression of the B220 form of the common leukocyte antigen (Ly-5) and D-JH rearrangement of the Ig heavy chain gene complex. B-lineage progenitor cells, or pro-B cells, that have initiated Ig gene rearrangement, but do not express detectable Ig heavy or light chain protein, have recently been shown to retain substantial capacity for expansion in vitro in the presence of bone marrow (BM) stromal cells and interleukin-7 (IL-7). Although the potentiating effect of stromal cells on pro-B-cell proliferation can be partially attributed to the ligand for the proto-oncogene receptor c-kit (c-kit ligand [KL] or stem cell factor), several lines of evidence suggest that c-kit-mediated cell signalling is not required for pro-B-cell expansion. Previous studies from this laboratory demonstrated that insulin-like growth factor-1 (IGF-1) potentiated the proliferative effect of IL-7 on nonadherent cells from lymphoid long-term BM cultures in a manner similar to that shown for KL. To further delineate specific cell stages that respond to lymphopoietic cytokines, we derived continuously proliferating pro-B-cell lines from day-14 murine fetal liver in the presence of IL-7 and BM stromal cell clone S10. Initial expansion and continued proliferation of these pro-B-cell lines was absolutely dependent on the presence of both IL-7 and stromal cells. In the absence of KL, IL-7-stimulated proliferation of these cells in short- term cultures and addition of either recombinant IGF-1 or KL significantly potentiated this proliferative response. Although IGF-2 and insulin also potentiated the effect of IL-7, our data suggest that neither IGF-2 nor insulin represent normal regulators of intramyeloid lymphocyte development. IGF-1 and KL activate unique cascades of intracellular signalling events and inclusion of both cytokines in cultures of IL-7-stimulated pro-B cells resulted in additive potentiation of the proliferative response. Taken together, these results suggest that expansion of pro-B cells in vivo is maintained by at least three stromal cell-derived cytokines. IL-7 appears to be unique in delivering the primary proliferative signal for pro-B-cell expansion; however, both KL and IGF-1 potentiate the proliferative effect of IL-7 on these cells. The functional redundancy and additive effects of IGF-1 and KL as amplification signals for developing B- lineage cells underscore the essential nature of clonal expansion and diversification in development of immunocompetent lymphoid cells.


Blood ◽  
1993 ◽  
Vol 82 (10) ◽  
pp. 3005-3011 ◽  
Author(s):  
LF Gibson ◽  
D Piktel ◽  
KS Landreth

Commitment to B-lymphocyte differentiation is characterized by expression of the B220 form of the common leukocyte antigen (Ly-5) and D-JH rearrangement of the Ig heavy chain gene complex. B-lineage progenitor cells, or pro-B cells, that have initiated Ig gene rearrangement, but do not express detectable Ig heavy or light chain protein, have recently been shown to retain substantial capacity for expansion in vitro in the presence of bone marrow (BM) stromal cells and interleukin-7 (IL-7). Although the potentiating effect of stromal cells on pro-B-cell proliferation can be partially attributed to the ligand for the proto-oncogene receptor c-kit (c-kit ligand [KL] or stem cell factor), several lines of evidence suggest that c-kit-mediated cell signalling is not required for pro-B-cell expansion. Previous studies from this laboratory demonstrated that insulin-like growth factor-1 (IGF-1) potentiated the proliferative effect of IL-7 on nonadherent cells from lymphoid long-term BM cultures in a manner similar to that shown for KL. To further delineate specific cell stages that respond to lymphopoietic cytokines, we derived continuously proliferating pro-B-cell lines from day-14 murine fetal liver in the presence of IL-7 and BM stromal cell clone S10. Initial expansion and continued proliferation of these pro-B-cell lines was absolutely dependent on the presence of both IL-7 and stromal cells. In the absence of KL, IL-7-stimulated proliferation of these cells in short- term cultures and addition of either recombinant IGF-1 or KL significantly potentiated this proliferative response. Although IGF-2 and insulin also potentiated the effect of IL-7, our data suggest that neither IGF-2 nor insulin represent normal regulators of intramyeloid lymphocyte development. IGF-1 and KL activate unique cascades of intracellular signalling events and inclusion of both cytokines in cultures of IL-7-stimulated pro-B cells resulted in additive potentiation of the proliferative response. Taken together, these results suggest that expansion of pro-B cells in vivo is maintained by at least three stromal cell-derived cytokines. IL-7 appears to be unique in delivering the primary proliferative signal for pro-B-cell expansion; however, both KL and IGF-1 potentiate the proliferative effect of IL-7 on these cells. The functional redundancy and additive effects of IGF-1 and KL as amplification signals for developing B- lineage cells underscore the essential nature of clonal expansion and diversification in development of immunocompetent lymphoid cells.


Blood ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 1881-1890 ◽  
Author(s):  
R Namikawa ◽  
MO Muench ◽  
JE de Vries ◽  
MG Roncarolo

Abstract The effects of a novel cytokine FLK2/FLT3 ligand (FL) on human fetal bone marrow-derived CD34+CD19+ pro-B cells were analyzed in a stromal- cell-independent, serum-deprived culture system. FL, like interleukin-3 (IL-3), synergized with IL-7 in promoting pro-B cell growth, and differentiation of these cells into CD34-CD19+clgM+slgM- pre-B cells, whereas a small proportion of these cells even differentiate into more mature slgM+ B cells. In contrast, KIT ligand (KL) and granulocyte- macrophage colony-stimulating factor (GM-CSF) were ineffective in promoting IL-7-dependent pro-B cell growth and differentiation. Maximal levels of pro-B cell expansion, generally resulting in 15- to 30-fold increases in cellularity, were obtained in cultures supplemented with optimal doses of FL + IL-7 + IL-3. The addition of mouse bone marrow stromal cells further enhanced the proliferation and differentiation of pro-B cells obtained in the presence of these three cytokines. Under these conditions, cultures could be maintained for more than 4 weeks, and in general 40- to 50-fold increases in cell numbers were observed by 3 weeks of culture. The percentages of clgM+ and slgM+ B cells increased 1.5- to 3-fold and 2-fold, respectively, suggesting that stromal cells may provide additional costimulatory signals for human B- cell growth and differentiation that are different from IL-7, IL-3, and FL. Collectively, our results indicate that FL, in contrast to KL, strongly promotes long-term expansion and differentiation of human pro- B cells in the presence of IL-7 or in combination of IL-7 and IL-3, which is a novel property of this hematopoietic growth factor.


Blood ◽  
1995 ◽  
Vol 85 (8) ◽  
pp. 2045-2051 ◽  
Author(s):  
TH Winkler ◽  
F Melchers ◽  
AG Rolink

Clones and lines of precursor (pre) B cells can be established by limiting dilutions of unseparated cell suspensions of fetal liver or bone marrow on stromal cells in the presence of interleukin (IL)-7. When IL-3 is used instead of IL-7, cultures are regularly overgrown by different precursor cells of the myeloid lineage, as well as by adherent cells that inhibit pre-B-cell expansion. However, in the presence of either IL-7 or IL-3, clones of pre-B cells can be established on stroma cells at frequencies near one in one when the cultures are initiated with cell sorter purified CD45RO (B220)+/c-kit+ fetal liver or bone marrow derived pre-B cells. Clones grown on stromal cells in the presence of IL-7 can be regrown in IL-3, and vice versa. Pre-B cells that proliferate on stromal cells in the presence of IL-7 or IL-3 have the same phenotype, ie, are B220+ c-kit+, CD43+, and surrogate light chain+. Removal of the growth factors (IL-7, respectively IL-3) from the cultures results in differentiation to surface immunoglobulin (slg) positive, c-kit-, CD43-, surrogate light chain-B cells, a fraction of which is lipopolysaccharide (LPS) responsive as shown by IgM secretion. These results show that IL-7 and IL-3 stimulate largely overlapping populations of precursor B cells from bone marrow to proliferate for long periods of time in the presence of stromal cells. Thus, IL-7 and IL-3 are alternative growth factors for the same pre-BI cell.


2001 ◽  
Vol 165 (1) ◽  
pp. 284-288 ◽  
Author(s):  
JOSE LUIS DUQUE ◽  
ROSALYN M. ADAM ◽  
JOHN S. MULLEN ◽  
JIANQING LIN ◽  
JEROME P. RICHIE ◽  
...  

Blood ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 1881-1890 ◽  
Author(s):  
R Namikawa ◽  
MO Muench ◽  
JE de Vries ◽  
MG Roncarolo

The effects of a novel cytokine FLK2/FLT3 ligand (FL) on human fetal bone marrow-derived CD34+CD19+ pro-B cells were analyzed in a stromal- cell-independent, serum-deprived culture system. FL, like interleukin-3 (IL-3), synergized with IL-7 in promoting pro-B cell growth, and differentiation of these cells into CD34-CD19+clgM+slgM- pre-B cells, whereas a small proportion of these cells even differentiate into more mature slgM+ B cells. In contrast, KIT ligand (KL) and granulocyte- macrophage colony-stimulating factor (GM-CSF) were ineffective in promoting IL-7-dependent pro-B cell growth and differentiation. Maximal levels of pro-B cell expansion, generally resulting in 15- to 30-fold increases in cellularity, were obtained in cultures supplemented with optimal doses of FL + IL-7 + IL-3. The addition of mouse bone marrow stromal cells further enhanced the proliferation and differentiation of pro-B cells obtained in the presence of these three cytokines. Under these conditions, cultures could be maintained for more than 4 weeks, and in general 40- to 50-fold increases in cell numbers were observed by 3 weeks of culture. The percentages of clgM+ and slgM+ B cells increased 1.5- to 3-fold and 2-fold, respectively, suggesting that stromal cells may provide additional costimulatory signals for human B- cell growth and differentiation that are different from IL-7, IL-3, and FL. Collectively, our results indicate that FL, in contrast to KL, strongly promotes long-term expansion and differentiation of human pro- B cells in the presence of IL-7 or in combination of IL-7 and IL-3, which is a novel property of this hematopoietic growth factor.


Blood ◽  
1990 ◽  
Vol 76 (11) ◽  
pp. 2311-2320 ◽  
Author(s):  
FM Lemoine ◽  
S Dedhar ◽  
GM Lima ◽  
CJ Eaves

Abstract Marrow stromal elements produce as yet uncharacterized soluble growth factors that can stimulate the proliferation of murine pre-B cells, although close contact between these two cell types appears to ensure a better pre-B cell response. We have now shown that freshly isolated normal pre-B cells (ie, the B220+, surface mu- fraction of adult mouse bone marrow) adhere to fibronectin (FN) via an RGD cell-attachment site, as shown in a serum-free adherence assay, and they lose this functional ability on differentiation in vivo into B cells (ie, the B220+, surface mu+ fraction). Similarly, cells from an immortalized but stromal cell-dependent and nontumorigenic murine pre-B cell line originally derived from a Whitlock-Witte culture were also found to adhere to fibronectin (FN) via an RGD cell-attachment site. Moreover, in the presence of anti-FN receptor antibodies, the ability of this immortalized pre-B cell line to proliferate when co-cultured with a supportive stromal cell line (M2–10B4 cells) was markedly reduced (down to 30% of control). This suggests that pre-B cell attachment to FN on stromal cells may be an important component of the mechanism by which stromal cells stimulate normal pre-B cell proliferation and one that is no longer operative to control their more differentiated progeny. Two differently transformed pre-B cell lines, both of which are autocrine, stromal-independent, tumorigenic in vivo, and partially or completely differentiation-arrested at a very early stage of pre-B cell development, did not bind to FN. In addition, anti-FN receptor antibodies were much less effective in diminishing the ability of these tumorigenic pre-B cells to respond to M2–10B4 cell stimulation, which could still be demonstrated when the tumorigenic pre-B cells were co- cultured with M2–10B4 cells at a sufficiently low cell density. Analysis of cell surface molecules immunoprecipitated from both the nontumorigenic and tumorigenic pre-B cell lines by an anti-FN receptor antibody showed an increase in very late antigen (VLA) alpha chain(s) in both tumorigenic pre-B cell lines and a decrease in the beta 1 chain in one. Interestingly, all of the pre-B cell lines expressed similar amounts of messenger RNA for the beta 1 chain of the FN receptor. These results suggest that alteration of FN receptor expression on pre-B cells may represent a mechanism contributing to the outgrowth of leukemic pre-B cells with an autocrine phenotype and capable of stromal cell-independent, autonomous growth.


Sign in / Sign up

Export Citation Format

Share Document