scholarly journals Developmental Effects of Ectopic Expression of the Glucocorticoid Receptor DNA Binding Domain Are Alleviated by an Amino Acid Substitution That Interferes with Homeodomain Binding

1999 ◽  
Vol 19 (10) ◽  
pp. 7106-7122 ◽  
Author(s):  
Jun Ming Wang ◽  
Gratien G. Préfontaine ◽  
Madeleine E. Lemieux ◽  
Louise Pope ◽  
Marie-Andrée Akimenko ◽  
...  

ABSTRACT Steroid hormone receptors are distinguished from other members of the nuclear hormone receptor family through their association with heat shock proteins and immunophilins in the absence of ligands. Heat shock protein association represses steroid receptor DNA binding and protein-protein interactions with other transcription factors and facilitates hormone binding. In this study, we investigated the hormone-dependent interaction between the DNA binding domain (DBD) of the glucocorticoid receptor (GR) and the POU domains of octamer transcription factors 1 and 2 (Oct-1 and Oct-2, respectively). Our results indicate that the GR DBD binds directly, not only to the homeodomains of Oct-1 and Oct-2 but also to the homeodomains of several other homeodomain proteins. As these results suggest that the determinants for binding to the GR DBD are conserved within the homeodomain, we examined whether the ectopic expression of GR DBD peptides affected early embryonic development. The expression of GR DBD peptides in one-cell-stage zebra fish embryos severely affected their development, beginning with a delay in the epibolic movement during the blastula stage and followed by defects in convergence-extension movements during gastrulation, as revealed by the abnormal patterns of expression of several dorsal gene markers. In contrast, embryos injected with mRNA encoding a GR peptide with a point mutation that disrupted homeodomain binding or with mRNA encoding the DBD of the closely related mineralocorticoid receptor, which does not bind octamer factors, developed normally. Moreover, coinjection of mRNA encoding the homeodomain of Oct-2 completely rescued embryos from the effects of the GR DBD. These results highlight the potential of DNA-independent effects of GR in a whole-animal model and suggest that at least some of these effects may result from direct interactions with homeodomain proteins.

Biochemistry ◽  
2000 ◽  
Vol 39 (30) ◽  
pp. 8909-8916 ◽  
Author(s):  
Thomas Lundbäck ◽  
Susanne van den Berg ◽  
Torleif Härd

2021 ◽  
Vol 713 ◽  
pp. 109060
Author(s):  
Neetu Neetu ◽  
Madhusudhanarao Katiki ◽  
Jai Krishna Mahto ◽  
Monica Sharma ◽  
Anoop Narayanan ◽  
...  

Development ◽  
1998 ◽  
Vol 125 (24) ◽  
pp. 5019-5031 ◽  
Author(s):  
F.V. Mariani ◽  
R.M. Harland

We have identified Xenopus Brain Factor 2 (XBF-2) as a potent neuralizing activity in an expression cloning screen. In ectodermal explants, XBF-2 converts cells from an epidermal to a neural fate. Such explants contain neurons with distinct axonal profiles and express both anterior and posterior central nervous system (CNS) markers. In striking contrast to X-ngnR-1a or X-NeuroD, ectopic expression of XBF-2 in Xenopus embryos results in an expansion of the neural plate to the ventral midline. The enlarged neural plate consists predominantly of undifferentiated neurons. XBF-2 lies downstream of the BMP antagonists noggin, cerberus, and gremlin since ectodermal explants expressing these molecules exhibit strong expression of XBF-2. While XBF-2 does not upregulate the expression of secreted neural inducers, it downregulates the transcription of BMP-4, an epidermal inducer. We show that XBF-2 acts as a transcriptional repressor and that its effects can be phenocopied with either the engrailed or hairy repressor domain fused to the XBF-2 DNA-binding domain. A fusion of the DNA-binding domain to the activator domain of VP16 blocks the effects of XBF-2 and prevents neural plate development in the embryo. This provides evidence that a transcriptional repressor can affect both regional neural development and neurogenesis in vertebrates.


1995 ◽  
Vol 247 (4) ◽  
pp. 689-700 ◽  
Author(s):  
Marc A.A. van Tilborg ◽  
Alexandre M.J.J. Bonvin ◽  
Karl Hård ◽  
Adrian L. Davis ◽  
Bonnie Maler ◽  
...  

1995 ◽  
Vol 15 (6) ◽  
pp. 3354-3362 ◽  
Author(s):  
M Green ◽  
T J Schuetz ◽  
E K Sullivan ◽  
R E Kingston

Human heat shock factor 1 (HSF1) stimulates transcription from heat shock protein genes following stress. We have used chimeric proteins containing the GAL4 DNA binding domain to identify the transcriptional activation domains of HSF1 and a separate domain that is capable of regulating activation domain function. This regulatory domain conferred heat shock inducibility to chimeric proteins containing the activation domains. The regulatory domain is located between the transcriptional activation domains and the DNA binding domain of HSF1 and is conserved between mammalian and chicken HSF1 but is not found in HSF2 or HSF3. The regulatory domain was found to be functionally homologous between chicken and human HSF1. This domain does not affect DNA binding by the chimeric proteins and does not contain any of the sequences previously postulated to regulate DNA binding of HSF1. Thus, we suggest that activation of HSF1 by stress in humans is controlled by two regulatory mechanisms that separately confer heat shock-induced DNA binding and transcriptional stimulation.


Sign in / Sign up

Export Citation Format

Share Document