scholarly journals Activation of the Lbc Rho Exchange Factor Proto-Oncogene by Truncation of an Extended C Terminus That Regulates Transformation and Targeting

1999 ◽  
Vol 19 (2) ◽  
pp. 1334-1345 ◽  
Author(s):  
Paola Sterpetti ◽  
Andrew A. Hack ◽  
Mariam P. Bashar ◽  
Brian Park ◽  
Sou-De Cheng ◽  
...  

ABSTRACT The human lbc oncogene product is a guanine nucleotide exchange factor that specifically activates the Rho small GTP binding protein, thus resulting in biologically active, GTP-bound Rho, which in turn mediates actin cytoskeletal reorganization, gene transcription, and entry into the mitotic S phase. In order to elucidate the mechanism of onco-Lbc transformation, here we report that while proto- and onco-lbc cDNAs encode identical N-terminal dbloncogene homology (DH) and pleckstrin homology (PH) domains, proto-Lbc encodes a novel C terminus absent in the oncoprotein that includes a predicted α-helical region homologous to cyto-matrix proteins, followed by a proline-rich region. The lbc proto-oncogene maps to chromosome 15, and onco-lbc represents a fusion of the lbc proto-oncogene N terminus with a short, unrelated C-terminal sequence from chromosome 7. Both onco- and proto-Lbc can promote formation of GTP-bound Rho in vivo. Proto-Lbc transforming activity is much reduced compared to that of onco-Lbc, and a significant increase in transforming activity requires truncation of both the α-helical and proline-rich regions in the proto-Lbc C terminus. Deletion of the chromosome 7-derived C terminus of onco-Lbc does not destroy transforming activity, demonstrating that it is loss of the proto-Lbc C terminus, rather than gain of an unrelated C-terminus by onco-Lbc, that confers transforming activity. Mutations of onco-Lbc DH and PH domains demonstrate that both domains are necessary for full transforming activity. The proto-Lbc product localizes to the particulate (membrane) fraction, while the majority of the onco-Lbc product is cytosolic, and mutations of the PH domain do not affect this localization. The proto-Lbc C-terminus alone localizes predominantly to the particulate fraction, indicating that the C terminus may play a major role in the correct subcellular localization of proto-Lbc, thus providing a mechanism for regulating Lbc oncogenic potential.

2002 ◽  
Vol 22 (8) ◽  
pp. 2487-2497 ◽  
Author(s):  
Michelle A. Booden ◽  
Sharon L. Campbell ◽  
Channing J. Der

ABSTRACT Vav2, like all Dbl family proteins, possesses tandem Dbl homology (DH) and pleckstrin homology (PH) domains and functions as a guanine nucleotide exchange factor for Rho family GTPases. Whereas the PH domain is a critical positive regulator of DH domain function for a majority of Dbl family proteins, the PH domains of the related Vav and Vav3 proteins are dispensable for DH domain activity. Instead, Vav proteins contain a cysteine-rich domain (CRD) critical for DH domain function. We evaluated the contribution of the PH domain and the CRD to Vav2 guanine nucleotide exchange, signaling, and transforming activity. Unexpectedly, we found that mutations of the PH domain impaired Vav2 signaling, transforming activity, and membrane association. However, these mutations do not influence exchange activity on Rac and only slightly affect exchange on RhoA and Cdc42. We also found that the CRD was critical for the exchange activity in vitro and contributed to Vav2 membrane localization. Finally, we found that phosphoinositol 3-kinase activation synergistically enhanced Vav2 transforming and signaling activity by stimulating exchange activity but not membrane association. In conclusion, the PH domain and CRD are mechanistically distinct, positive modulators of Vav2 DH domain function in vivo.


1999 ◽  
Vol 112 (12) ◽  
pp. 1957-1965 ◽  
Author(s):  
K. Venkateswarlu ◽  
F. Gunn-Moore ◽  
J.M. Tavare ◽  
P.J. Cullen

ADP-ribosylation factors (ARFs) are small GTP-binding proteins that function as regulators of eukaryotic vesicle trafficking. Cytohesin-1 is a member of a family of ARF guanine nucleotide-exchange factors that contain a C-terminal pleckstrin homology (PH) domain which has been proposed to bind the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3). Here we demonstrate that in vitro, recombinant cytohesin-1 binds, via its PH domain, the inositol head group of PIP3, inositol 1,3,4, 5-tetrakisphosphate (IP4), with an affinity greater than 200-fold higher than the inositol head group of either phosphatidylinositol 4, 5-bisphosphate or phosphatidylinositol 3,4-bisphosphate. Moreover, addition of glycerol or diacetylglycerol to the 1-phosphate of IP4 does not alter the ability to interact with cytohesin-1, data which is entirely consistent with cytohesin-1 functioning as a putative PIP3 receptor. To address whether cytohesin-1 binds PIP3 in vivo, we have expressed a chimera of green fluorescent protein (GFP) fused to the N terminus of cytohesin-1 in PC12 cells. Using laser scanning confocal microscopy we demonstrate that either EGF- or NGF-stimulation of transiently transfected PC12 cells results in a rapid translocation of GFP-cytohesin-1 from the cytosol to the plasma membrane. This translocation is dependent on the cytohesin-1 PH domain and occurs with a time course that parallels the rate of plasma membrane PIP3 production. Furthermore, the translocation requires the ability of either agonist to activate PI 3-kinase, since it is inhibited by wortmannin (100 nM), LY294002 (50 microM) and by coexpression with a dominant negative p85. This data therefore suggests that in vivo cytohesin-1 can interact with PIP3 via its PH domain.


2002 ◽  
Vol 115 (14) ◽  
pp. 2867-2879 ◽  
Author(s):  
Valérie Derrien ◽  
Carole Couillault ◽  
Michel Franco ◽  
Stéphanie Martineau ◽  
Philippe Montcourrier ◽  
...  

We recently reported the identification of EFA6 (exchange factor for ARF6), a brain-specific Sec7-domain-containing guanine nucleotide exchange factor that works specifically on ARF6. Here, we have characterized the product of a broadly expressed gene encoding a novel 1056 amino-acid protein that we have named EFA6B. We show that EFA6B, which contains a Sec7 domain that is highly homologous to EFA6, works as an ARF6-specific guanine exchange factor in vitro. Like EFA6, which will be referred to as EFA6A from now on, EFA6B is involved in membrane recycling and colocalizes with ARF6 in actin-rich membrane ruffles and microvilli-like protrusions on the dorsal cell surface in transfected baby hamster kidney cells. Strikingly, homology between EFA6A and EFA6B is not limited to the Sec7 domain but extends to an adjacent pleckstrin homology (PH) domain and a ∼150 amino-acid C-terminal region containing a predicted coiled coil motif. Association of EFA6A with membrane ruffles and microvilli-like structures depends on the PH domain, which probably interacts with phosphatidylinositol 4,5-biphosphate. Moreover, we show that overexpression of the PH domain/C-terminal region of EFA6A or EFA6B in the absence of the Sec7 domain promotes lengthening of dorsal microvillar protrusions. This morphological change requires the integrity of the coiled-coil motif. Lastly, database analysis reveals that the EFA6-family comprises at least four members in humans and is conserved in multicellular organisms throughout evolution. Our results suggest that EFA6 family guanine exchange factors are modular proteins that work through the coordinated action of the catalytic Sec7 domain to promote ARF6 activation, through the PH domain to regulate association with specific subdomains of the plasma membrane and through the C-terminal region to control actin cytoskeletal reorganization.


2019 ◽  
Vol 12 (569) ◽  
pp. eaav2449 ◽  
Author(s):  
Sumit J. Bandekar ◽  
Nadia Arang ◽  
Ena S. Tully ◽  
Brittany A. Tang ◽  
Brenna L. Barton ◽  
...  

The C-terminal guanine nucleotide exchange factor (GEF) module of Trio (TrioC) transfers signals from the Gαq/11subfamily of heterotrimeric G proteins to the small guanosine triphosphatase (GTPase) RhoA, enabling Gαq/11-coupled G protein–coupled receptors (GPCRs) to control downstream events, such as cell motility and gene transcription. This conserved signal transduction axis is crucial for tumor growth in uveal melanoma. Previous studies indicate that the GEF activity of the TrioC module is autoinhibited, with release of autoinhibition upon Gαq/11binding. Here, we determined the crystal structure of TrioC in its basal state and found that the pleckstrin homology (PH) domain interacts with the Dbl homology (DH) domain in a manner that occludes the Rho GTPase binding site, thereby suggesting the molecular basis of TrioC autoinhibition. Biochemical and biophysical assays revealed that disruption of the autoinhibited conformation destabilized and activated the TrioC module in vitro. Last, mutations in the DH-PH interface found in patients with cancer activated TrioC and, in the context of full-length Trio, led to increased abundance of guanosine triphosphate–bound RhoA (RhoA·GTP) in human cells. These mutations increase mitogenic signaling through the RhoA axis and, therefore, may represent cancer drivers operating in a Gαq/11-independent manner.


2007 ◽  
Vol 27 (24) ◽  
pp. 8683-8697 ◽  
Author(s):  
Rafael García-Mata ◽  
Adi D. Dubash ◽  
Lisa Sharek ◽  
Heather S. Carr ◽  
Jeffrey A. Frost ◽  
...  

ABSTRACT Net1 is a RhoA-specific guanine nucleotide exchange factor which localizes to the nucleus at steady state. A deletion in its N terminus redistributes the protein to the cytosol, where it activates RhoA and can promote transformation. Net1 contains a PDZ-binding motif at the C terminus which is essential for its transformation properties. Here, we found that Net1 interacts through its PDZ-binding motif with tumor suppressor proteins of the Dlg family, including Dlg1/SAP97, SAP102, and PSD95. The interaction between Net1 and its PDZ partners promotes the translocation of the PDZ proteins to nuclear subdomains associated with PML bodies. Interestingly, the oncogenic mutant of Net1 is unable to shuttle the PDZ proteins to the nucleus, although these proteins still associate as clusters in the cytosol. Our results suggest that the ability of oncogenic Net1 to transform cells may be in part related to its ability to sequester tumor suppressor proteins like Dlg1 in the cytosol, thereby interfering with their normal cellular function. In agreement with this, the transformation potential of oncogenic Net1 is reduced when it is coexpressed with Dlg1 or SAP102. Together, our results suggest that the interaction between Net1 and Dlg1 may contribute to the mechanism of Net1-mediated transformation.


2011 ◽  
Vol 22 (19) ◽  
pp. 3634-3644 ◽  
Author(s):  
Shuliang Chen ◽  
Huaqing Cai ◽  
Sei-Kyoung Park ◽  
Shekar Menon ◽  
Catherine L. Jackson ◽  
...  

The TRAPP complexes are multimeric guanine exchange factors (GEFs) for the Rab GTPase Ypt1p. The three complexes (TRAPPI, TRAPPII, and TRAPPIII) share a core of common subunits required for GEF activity, as well as unique subunits (Trs130p, Trs120p, Trs85p, and Trs65p) that redirect the GEF from the endoplasmic reticulum–Golgi pathway to different cellular locations where TRAPP mediates distinct membrane trafficking events. Roles for three of the four unique TRAPP subunits have been described before; however, the role of the TRAPPII-specific subunit Trs65p has remained elusive. Here we demonstrate that Trs65p directly binds to the C-terminus of the Arf1p exchange factor Gea2p and provide in vivo evidence that this interaction is physiologically relevant. Gea2p and TRAPPII also bind to the yeast orthologue of the γ subunit of the COPI coat complex (Sec21p), a known Arf1p effector. These and previous findings reveal that TRAPPII is part of an Arf1p GEF-effector loop that appears to play a role in recruiting or stabilizing TRAPPII to membranes. In support of this proposal, we show that TRAPPII is more soluble in an arf1Δ mutant.


2004 ◽  
Vol 15 (11) ◽  
pp. 5158-5171 ◽  
Author(s):  
Pieta K. Mattila ◽  
Omar Quintero-Monzon ◽  
Jamie Kugler ◽  
James B. Moseley ◽  
Steven C. Almo ◽  
...  

Cyclase-associated protein (CAP), also called Srv2 in Saccharomyces cerevisiae, is a conserved actin monomer-binding protein that promotes cofilin-dependent actin turnover in vitro and in vivo. However, little is known about the mechanism underlying this function. Here, we show that S. cerevisiae CAP binds with strong preference to ADP-G-actin (Kd 0.02 μM) compared with ATP-G-actin (Kd 1.9 μM) and competes directly with cofilin for binding ADP-G-actin. Further, CAP blocks actin monomer addition specifically to barbed ends of filaments, in contrast to profilin, which blocks monomer addition to pointed ends of filaments. The actin-binding domain of CAP is more extensive than previously suggested and includes a recently solved β-sheet structure in the C-terminus of CAP and adjacent sequences. Using site-directed mutagenesis, we define evolutionarily conserved residues that mediate binding to ADP-G-actin and demonstrate that these activities are required for CAP function in vivo in directing actin organization and polarized cell growth. Together, our data suggest that in vivo CAP competes with cofilin for binding ADP-actin monomers, allows rapid nucleotide exchange to occur on actin, and then because of its 100-fold weaker binding affinity for ATP-actin compared with ADP-actin, allows other cellular factors such as profilin to take the handoff of ATP-actin and facilitate barbed end assembly.


Sign in / Sign up

Export Citation Format

Share Document