scholarly journals Vascular Endothelial Growth Factor Activates Nuclear Factor of Activated T Cells in Human Endothelial Cells: a Role for Tissue Factor Gene Expression

1999 ◽  
Vol 19 (3) ◽  
pp. 2032-2043 ◽  
Author(s):  
Angel Luis Armesilla ◽  
Elisa Lorenzo ◽  
Pablo Gómez del Arco ◽  
Sara Martínez-Martínez ◽  
Arantzazu Alfranca ◽  
...  

ABSTRACT Vascular endothelial growth factor (VEGF) is a potent angiogenic inducer that stimulates the expression of tissue factor (TF), the major cellular initiator of blood coagulation. Here we show that signaling triggered by VEGF induced DNA-binding and transcriptional activities of nuclear factor of activated T cells (NFAT) and AP-1 in human umbilical vein endothelial cells (HUVECs). VEGF also induced TF mRNA expression and gene promoter activation by a cyclosporin A (CsA)-sensitive mechanism. As in lymphoid cells, NFAT was dephosphorylated and translocated to the nucleus upon activation of HUVECs, and these processes were blocked by CsA. NFAT was involved in the VEGF-mediated TF promoter activation as evidenced by cotransfection experiments with a dominant negative version of NFAT and site-directed mutagenesis of a newly identified NFAT site within the TF promoter that overlaps with a previously identified κB-like site. Strikingly, this site bound exclusively NFAT not only from nuclear extracts of HUVECs activated by VEGF, a stimulus that failed to induce NF-κB-binding activity, but also from extracts of cells activated with phorbol esters and calcium ionophore, a combination of stimuli that triggered the simultaneous activation of NFAT and NF-κB. These results implicate NFAT in the regulation of endothelial genes by physiological means and shed light on the mechanisms that switch on the gene expression program induced by VEGF and those regulating TF gene expression.

2003 ◽  
Vol 23 (1) ◽  
pp. 14-25 ◽  
Author(s):  
Zhao-Jun Liu ◽  
Takashi Shirakawa ◽  
Yan Li ◽  
Akinobu Soma ◽  
Masahiro Oka ◽  
...  

ABSTRACT Notch and its ligands play critical roles in cell fate determination. Expression of Notch and ligand in vascular endothelium and defects in vascular phenotypes of targeted mutants in the Notch pathway have suggested a critical role for Notch signaling in vasculogenesis and angiogenesis. However, the angiogenic signaling that controls Notch and ligand gene expression is unknown. We show here that vascular endothelial growth factor (VEGF) but not basic fibroblast growth factor can induce gene expression of Notch1 and its ligand, Delta-like 4 (Dll4), in human arterial endothelial cells. The VEGF-induced specific signaling is mediated through VEGF receptors 1 and 2 and is transmitted via the phosphatidylinositol 3-kinase/Akt pathway but is independent of mitogen-activated protein kinase and Src tyrosine kinase. Constitutive activation of Notch signaling stabilizes network formation of endothelial cells on Matrigel and enhances formation of vessel-like structures in a three-dimensional angiogenesis model, whereas blocking Notch signaling can partially inhibit network formation. This study provides the first evidence for regulation of Notch/Delta gene expression by an angiogenic growth factor and insight into the critical role of Notch signaling in arteriogenesis and angiogenesis.


2001 ◽  
Vol 193 (5) ◽  
pp. 607-620 ◽  
Author(s):  
Gabriela L. Hernández ◽  
Olga V. Volpert ◽  
Miguel A. Íñiguez ◽  
Elisa Lorenzo ◽  
Sara Martínez-Martínez ◽  
...  

Cyclosporin A (CsA) is an immunosuppressive drug that inhibits the activity of transcription factors of the nuclear factor of activated T cells (NFAT) family, interfering with the induction of cytokines and other inducible genes required for the immune response. Here we show that CsA inhibits migration of primary endothelial cells and angiogenesis induced by vascular endothelial growth factor (VEGF); this effect appears to be mediated through the inhibition of cyclooxygenase (Cox)-2, the transcription of which is activated by VEGF in primary endothelial cells. Consistent with this, we show that the induction of Cox-2 gene expression by VEGF requires NFAT activation. Most important, the CsA-mediated inhibition of angiogenesis both in vitro and in vivo was comparable to the Cox-2 inhibitor NS-398, and reversed by prostaglandin E2. Furthermore, the in vivo corneal angiogenesis induced by VEGF, but not by basic fibroblast growth factor, was selectively inhibited in mice treated with CsA systemically. These findings involve NFAT in the regulation of Cox-2 in endothelial cells, point to a role for this transcription factor in angiogenesis, and may provide a novel mechanism underlying the beneficial effects of CsA in angiogenesis-related diseases such as rheumatoid arthritis and psoriasis.


2017 ◽  
Vol 312 (6) ◽  
pp. H1163-H1175 ◽  
Author(s):  
Nathaniel Lal ◽  
Amy Pei-Ling Chiu ◽  
Fulong Wang ◽  
Dahai Zhang ◽  
Jocelyn Jia ◽  
...  

Vascular endothelial growth factor B (VEGFB) is highly expressed in metabolically active tissues, such as the heart and skeletal muscle, suggesting a function in maintaining oxidative metabolic and contractile function in these tissues. Multiple models of heart failure have indicated a significant drop in VEGFB. However, whether there is a role for decreased VEGFB in diabetic cardiomyopathy is currently unknown. Of the VEGFB located in cardiomyocytes, there is a substantial and readily releasable pool localized on the cell surface. The immediate response to high glucose and the secretion of endothelial heparanase is the release of this surface-bound VEGFB, which triggers signaling pathways and gene expression to influence endothelial cell (autocrine action) and cardiomyocyte (paracrine effects) survival. Under conditions of hyperglycemia, when VEGFB production is impaired, a robust increase in vascular endothelial growth factor receptor (VEGFR)-1 expression ensues as a possible mechanism to enhance or maintain VEGFB signaling. However, even with an increase in VEGFR1 after diabetes, cardiomyocytes are unable to respond to VEGFB. In addition to the loss of VEGFB production and signaling, evaluation of latent heparanase, the protein responsible for VEGFB release, also showed a significant decline in expression in whole hearts from animals with chronic or acute diabetes. Defects in these numerous VEGFB pathways were associated with an increased cell death signature in our models of diabetes. Through this bidirectional interaction between endothelial cells (which secrete heparanase) and cardiomyocytes (which release VEGFB), this growth factor could provide the diabetic heart protection against cell death and may be a critical tool to delay or prevent cardiomyopathy. NEW & NOTEWORTHY We discovered a bidirectional interaction between endothelial cells (which secrete heparanase) and cardiomyocytes [which release vascular endothelial growth factor B (VEGFB)]. VEGFB promoted cell survival through ERK and cell death gene expression. Loss of VEGFB and its downstream signaling is an early event following hyperglycemia, is sustained with disease progression, and could explain diabetic cardiomyopathy.


Sign in / Sign up

Export Citation Format

Share Document