th1 polarization
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 24)

H-INDEX

33
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Sara G Dosil ◽  
Sheila Lopez-Cobo ◽  
Ana Rodriguez-Galan ◽  
Irene Fernandez-Delgado ◽  
Marta Ramirez-Huesca ◽  
...  

Natural killer (NK) cells recognise and kill target cells undergoing different types of stress. NK cells are also capable of modulating immune responses. In particular, they regulate T cell functions. Small RNA next-generation sequencing of resting and activated NK cells and their secreted EVs led to the identification of a specific repertoire of NK-EV-associated microRNAs and their post-transcriptional modifications signature. Several microRNAs of NK-EVs, namely miR-10b-5p, miR-92a-3p and miR-155-5p, specifically target molecules involved in Th1 responses. NK-EVs promote the downregulation of GATA-3 mRNA in CD4+ T cells and subsequent T-bet de-repression that leads to Th1 polarization and IFN-γ and IL-2 production. NK-EVs also have an effect on monocyte and moDCs function, driving their activation and increased presentation and co-stimulatory functions. Nanoparticle-delivered NK-EV microRNAs partially recapitulate NK-EV effects in vivo. Our results provide new insights on the immunomodulatory roles of NK-EVs that may help to improve their use as immunotherapeutic tools.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Yun Zhang ◽  
Jian Zhang ◽  
Tao Xu ◽  
Cheng Zhang ◽  
Wen-Qiao Yu ◽  
...  

Enterogenous infection is a major cause of death during traumatic hemorrhagic shock (THS). It has been reported that Toll-like receptor 5 (TLR5) plays an integral role in regulating mucosal immunity and intestinal homeostasis of the microbiota. However, the roles played by TLR5 on intestinal barrier maintenance and commensal bacterial translocation post-THS are poorly understood. In this research, we established THS models in wild-type (WT) and Tlr5−/− (genetically deficient in TLR5 expression) mice. We found that THS promoted bacterial translocation, while TLR5 deficiency played a protective role in preventing commensal bacteria dissemination after THS. Furthermore, intestinal microbiota analysis uncovered that TLR5 deficiency enhanced the mucosal biological barrier by decreasing RegIIIγ-mediated bactericidal activity against G+ anaerobic bacteria. We then sorted small intestinal TLR5+ lamina propria dendritic cells (LPDCs) and analyzed TH1 differentiation in the intestinal lamina propria and a coculture system consisting of LPDCs and naïve T cells. Although TLR5 deficiency attenuated the regulation of TH1 polarization by LPDCs, it conferred stability to the cells during THS. Moreover, retinoic acid (RA) released from TLR5+ LPDCs could play a key role in modulating TH1 polarization. We also found that gavage administration of RA alleviated bacterial translocation in THS-treated WT mice. In summary, we documented that TLR5 signaling plays a pivotal role in regulating RegIIIγ-induced killing of G+ anaerobic bacteria, and LPDCs mediated TH1 differentiation via RA. These processes prevent intestinal bacterial translocation and enterogenous infection after THS, suggesting that therapeutically targeting LPDCs or gut microbiota can interfere with bacterial translocation after THS.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1687-1687
Author(s):  
Jingru Zhu ◽  
Pankoj Kumar Das ◽  
Yitong Wang ◽  
Jingxia Li ◽  
Tamas Nagy ◽  
...  

Abstract Introduction: Vasoactive intestinal peptide (VIP) is an anti-inflammatory neuropeptide known to induce differentiation of regulatory dendritic cells and regulatory T cells. Using allogeneic hematopoietic stem cell transplantation (allo-HSCT) models, we have shown that donor bone marrow (BM) plasmacytoid dendritic cells (pDCs) facilitate HSC engraftment and attenuate pathogenesis of graft vs. host disease (GvHD) through regulation of recipient T cells. However, the mechanism by which pDCs mitigate the GvHD activity of recipient T cells is not clearly understood. Here, we report that donor pDCs limit pathogenic T cell inflammation by VIP production. Methods: To study VIP production by pDCs, FACS-sorted pDCs from B6 mouse BM were cultured with or without PMA/ionomycin in-vitro. After activation and cytospin slide preparation, pDCs were labeled with anti-PDCA1 (pDC marker) and anti-VIP antibodies for confocal fluorescence microscopy. To investigate the effects of VIP production on T cell proliferation, an in-vitro co-culture assay was performed using R848 and CpG-activated WT or VIP-KO pDCs with anti-CD3-activated, CFSE-labeled syngeneic T cells. For GvHD experiments, irradiated B10.BR (H-2K k) mice received 5x10 3 HSCs, 5x10 4 pDCs and 1x10 6 T cells from WT B6 (H-2K b) or VIP-KO B6 (H-2K b) mice. H&E histology of intestine and colon was performed for GvHD scoring 7 days post-transplant. Graft vs. leukemia (GvL) effects were tested by inoculating recipient mice with 5x10 5 LBRM 33-5A4 cells in the same model. Recipient mice were monitored twice weekly using a 10-point GvHD scoring system. Gene expression analysis of FACS-sorted donor T-cells from recipient spleens was performed using the Nanostring Myeloid Innate Immunity Panel at days 8 and 15 post-transplant. Results: Confocal microscopic images of PMA/ionomycin stimulated or unstimulated sorted pDCs show that VIP is synthesized by pDCs (anti-VIP, green; anti-PCDA-1, red; DAPI counterstain, blue) (Fig 1). After in-vitro culture, VIP expression and frequencies of VIP + pDCs were similar in PMA/ionomycin treated or untreated cells (not shown). VIP-KO mice have significantly higher percentages of pDCs in BM compared to WT (Fig 2a). T cells co-cultured with VIP-KO pDCs showed higher proliferation than T cells co-cultured with WT pDCs, demonstrating that VIP secreted by pDCs reduces T cell proliferation (Fig 2b). Moreover, VIP-KO pDCs induce significantly greater proliferation of IFN-gamma + CD8 T cells compared to WT, indicating that pDCs lacking VIP promote Th1 polarization in-vitro (Fig 2c). The data are consistent with results from GvHD experiments showing increased frequencies of Th1 polarized T cells and fewer regulatory T cells in recipients of VIP-KO pDCs compared with recipients of WT pDCs. Intestinal GvHD scores and crypt apoptosis in the colon were higher in recipient groups transplanted without pDCs or with VIP-KO pDCs compared with recipients of WT pDCs (Fig 3a, b, c). These results indicate that VIP secreted from pDCs limits GvHD in the gut. In the GvL model, administration of pDCs lacking VIP did not alter the anti-tumor effect of donor T cells. Nanostring analysis of T cells recovered from VIP-KO pDC recipients had increased expression of the pro-inflammatory transcription factor Bhlhe40 during the first two weeks post-transplant, and higher transcription levels of the inflammatory mediator Cyclophilin A at day 15 post-transplant than T cells from recipients of WT pDCs. Conclusion: Data from in vitro and in vivo experiments suggest that VIP secreted by pDCs limits pathogenic T cell proliferation. In murine allo-BMT, increased gut GvHD scores and crypt apoptosis in recipients transplanted without pDCs or with VIP-KO pDCs indicates that VIP secreted by pDCs consolidates gut integrity without altering GvL. Gene expression analysis also supports a mechanism by which VIP-secreting donor pDCs reduce T cell inflammation through negative regulation of Bhlhe40. Our findings suggest paracrine VIP signaling is a novel immune checkpoint pathway by which donor pDCs limit T cell activation, Th1 polarization, and inflammation, and improve outcomes of allo-BMT by reducing GvHD activity. Figure 1 Figure 1. Disclosures Waller: Cambium Oncology: Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company; Verastem Oncology: Consultancy, Research Funding.


2021 ◽  
pp. 104437
Author(s):  
Kenichi Nonaka ◽  
Masanao Saio ◽  
Naoki Umemura ◽  
Arizumi Kikuchi ◽  
Takao Takahashi ◽  
...  

2021 ◽  
Author(s):  
Jaganathan Subramani ◽  
Namir Shaabani ◽  
Dhwani Shetty ◽  
Haiwa Wu ◽  
Sunkuk Kwon ◽  
...  

ABSTRACTThe identification of a vaccination candidate against COVID-19 providing protecting activity against emerging SARS-COV-2 variants remains challenging. Here, we report protection activity against a spectrum of SARS-COV-2 and variants by immunization with protein-based recombinant RBD-C-tag administered with aluminum-phosphate adjuvant intramuscularly. Immunization of C57BL/6 mice with RBD-C-tag resulted in the in vivo production of IgG antibodies recognizing the immune-critical spike protein of the SARS-COV-2 virus as well as the SARS-COV-2 variants alpha (“United Kingdom”), beta (“South Africa”), gamma (“Brazil/Japan”), and delta (“India”) as well as wt-spike protein. RBD-C-tag immunization led to a desired Th1 polarization of CD4 T cells producing IFNγ. Importantly, RBD-C-tag immunization educated IgG production delivers antibodies that exert neutralizing activity against the highly transmissible SARS-COV-2 virus strains “Washington”, “South Africa” (beta), and “India” (delta) as determined by conservative infection protection experiments in vitro. Hence, the protein-based recombinant RBD-C-tag is considered a promising vaccination candidate against COVID-19 and a broad range of emerging SARS-COV-2 virus variants.


JCI Insight ◽  
2021 ◽  
Author(s):  
Amélie M. Julé ◽  
Kacie J. Hoyt ◽  
Kevin Wei ◽  
Maria Gutierrez-Arcelus ◽  
Maria L. Taylor ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael Lacy ◽  
Christina Bürger ◽  
Annelie Shami ◽  
Maiwand Ahmadsei ◽  
Holger Winkels ◽  
...  

AbstractAtherosclerosis is a major underlying cause of cardiovascular disease. Previous studies showed that inhibition of the co-stimulatory CD40 ligand (CD40L)-CD40 signaling axis profoundly attenuates atherosclerosis. As CD40L exerts multiple functions depending on the cell-cell interactions involved, we sought to investigate the function of the most relevant CD40L-expressing cell types in atherosclerosis: T cells and platelets. Atherosclerosis-prone mice with a CD40L-deficiency in CD4+ T cells display impaired Th1 polarization, as reflected by reduced interferon-γ production, and smaller atherosclerotic plaques containing fewer T-cells, smaller necrotic cores, an increased number of smooth muscle cells and thicker fibrous caps. Mice with a corresponding CD40-deficiency in CD11c+ dendritic cells phenocopy these findings, suggesting that the T cell-dendritic cell CD40L-CD40 axis is crucial in atherogenesis. Accordingly, sCD40L/sCD40 and interferon-γ concentrations in carotid plaques and plasma are positively correlated in patients with cerebrovascular disease. Platelet-specific deficiency of CD40L does not affect atherogenesis but ameliorates atherothrombosis. Our results establish divergent and cell-specific roles of CD40L-CD40 in atherosclerosis, which has implications for therapeutic strategies targeting this pathway.


2021 ◽  
Author(s):  
Jan-Hendrik Schroeder ◽  
Luke B Roberts ◽  
Katrin Meissl ◽  
Jon W Lo ◽  
Dominika Hromadova ◽  
...  

Innate lymphoid cells (ILC) play a significant role in the intestinal immune response and T-bet+ CD127+ group 1 cells (ILC1) have been linked to the pathogenesis of human inflammatory bowel disease (IBD). However, the functional importance of ILC1 in the context of an intact adaptive immune response has been controversial. In this report we demonstrate that induced depletion of T-bet using a Rosa26-Cre-ERT2 model resulted in the loss of intestinal ILC1, pointing to a post-developmental requirement of T-bet expression for these cells. Surprisingly, neither colonic intraepithelial ILC1, colonic lamina propria (cLP) ILC2 nor cLP ILC3 abundance were altered upon induced deletion of T-bet. Furthermore, Th1 polarization was not significantly altered upon induced T-bet deletion in vivo. Mechanistically, we report that STAT1 or STAT4 are not required for intestinal ILC1 development and maintenance. Mice with induced deletion of T-bet and subsequent loss of ILC1 were protected from the induction of severe colitis in vivo. Hence, this study provides support for the clinical development of an IBD treatment based on ILC1 depletion via targeting T-bet or its downstream transcriptional targets.


2021 ◽  
Vol 10 (10) ◽  
pp. 2064
Author(s):  
Alessandro Noto ◽  
Ramona Cassin ◽  
Veronica Mattiello ◽  
Gianluigi Reda

Autoimmune cytopenias (AICs) have been reported as a common complication in chronic lymphocytic leukemia (CLL) with autoimmune hemolytic anemia (AIHA), accounting for most cases. According to iwCLL guidelines, AICs poorly responsive to corticosteroids are considered indication for CLL-directed treatment. Chemo-immunotherapy has classically been employed, with variable results, and little data are available on novel agents, the current backbone of CLL therapy. The use of idelalisib in the setting of AICs is controversial and recent recommendations suggest avoiding idelalisib in this setting. Ibrutinib, through ITK-driven Th1 polarization of cell-mediated immune response, is known to produce an immunological rebalancing in CLL, which stands as a fascinating rationale for its use to treat autoimmunity. Although treatment-emergent AIHA has rarely been reported, ibrutinib has shown rapid and durable responses when used to treat AIHA arising in CLL. There is poor evidence regarding the role of BCL-2 inhibitors in CLL-associated AICs and the use of venetoclax in such cases is debated. Furthermore, their frequent use in combination with anti-CD20 agents might represent a confounding factor in evaluating their efficacy. In conclusions, because of their ability to mitigate an immunological dysregulation that is (at least partly) responsible for autoimmunity in CLL, to date BTK-inhibitors stand out as the most suitable choice when treatment of autoimmune cytopenias is required.


Sign in / Sign up

Export Citation Format

Share Document