scholarly journals Active Repression of Methylated Genes by the Chromosomal Protein MBD1

2000 ◽  
Vol 20 (4) ◽  
pp. 1394-1406 ◽  
Author(s):  
Huck-Hui Ng ◽  
Peter Jeppesen ◽  
Adrian Bird

ABSTRACT MBD1 belongs to a family of mammalian proteins that share a methyl-CpG binding domain. Previous work has shown that MBD1 binds to methylated sites in vivo and in vitro and can repress transcription from methylated templates in transcription extracts and in cultured cells. In the present study we established by several experimental criteria that, contrary to a previous report, MBD1 is not a component of the MeCP1 repressor complex. We identified a powerful transcriptional repression domain (TRD) at the C terminus of MBD1 that can actively repress transcription at a distance. Methylation-dependent repression in vivo depends on the presence of both the TRD and the methyl-CpG binding domain. The mechanism is likely to involve deacetylation, since the deacetylase inhibitor trichostatin A can overcome MBD1-mediated repression. Accordingly, we found that endogenous MBD1 is particularly concentrated at sites of centromeric heterochromatin, where acetylated histone H4 is deficient. Unlike MBD2 and MeCP2, MBD1 is not depleted by antibodies to the histone deacetylase HDAC1. Thus, the deacetylase-dependent pathway by which MBD1 actively silences methylated genes is likely to be different from that utilized by the methylation-dependent repressors MeCP1 and MeCP2.

1996 ◽  
Vol 16 (1) ◽  
pp. 414-421 ◽  
Author(s):  
X Nan ◽  
P Tate ◽  
E Li ◽  
A Bird

MeCP2 is a chromosomal protein that is concentrated in the centromeric heterochromatin of mouse cells. In vitro, the protein binds preferentially to DNA containing a single symmetrically methylated CpG. To find out whether the heterochromatic localization of MeCP2 depended on DNA methylation, we transiently expressed MeCP2-LacZ fusion proteins in cultured cells. Intact protein was targeted to heterochromatin in wild-type cells but was inefficiently localized in mutant cells with low levels of genomic DNA methylation. Deletions within MeCP2 showed that localization to heterochromatin required the 85-amino-acid methyl-CpG binding domain but not the remainder of the protein. Thus MeCP2 is a methyl-CpG-binding protein in vivo and is likely to be a major mediator of downstream consequences of DNA methylation.


2002 ◽  
Vol 22 (13) ◽  
pp. 4890-4901 ◽  
Author(s):  
Sophie Deltour ◽  
Sébastien Pinte ◽  
Cateline Guerardel ◽  
Bohdan Wasylyk ◽  
Dominique Leprince

ABSTRACT HIC1 (hypermethylated in cancer) and its close relative HRG22 (HIC1-related gene on chromosome 22) encode transcriptional repressors with five C2H2 zinc fingers and an N-terminal BTB/POZ autonomous transcriptional repression domain that is unable to recruit histone deacetylases (HDACs). Alignment of the HIC1 and HRG22 proteins from various species highlighted a perfectly conserved GLDLSKK/R motif highly related to the consensus CtBP interaction motif (PXDLSXK/R), except for the replacement of the virtually invariant proline by a glycine. HIC1 strongly interacts with mCtBP1 both in vivo and in vitro through this conserved GLDLSKK motif, thus extending the CtBP consensus binding site. The BTB/POZ domain does not interact with mCtBP1, but the dimerization of HIC1 through this domain is required for the interaction with mCtBP1. When tethered to DNA by fusion with the Gal4 DNA-binding domain, the HIC1 central region represses transcription through interactions with CtBP in a trichostatin A-sensitive manner. In conclusion, our results demonstrate that HIC1 mediates transcriptional repression by both HDAC-independent and HDAC-dependent mechanisms and show that CtBP is a HIC1 corepressor that is recruited via a variant binding site.


1999 ◽  
Vol 19 (6) ◽  
pp. 4366-4378 ◽  
Author(s):  
Robert F. Ryan ◽  
David C. Schultz ◽  
Kasirajan Ayyanathan ◽  
Prim B. Singh ◽  
Josh R. Friedman ◽  
...  

ABSTRACT Krüppel-associated box (KRAB) domains are present in approximately one-third of all human zinc finger proteins (ZFPs) and are potent transcriptional repression modules. We have previously cloned a corepressor for the KRAB domain, KAP-1, which is required for KRAB-mediated repression in vivo. To characterize the repression mechanism utilized by KAP-1, we have analyzed the ability of KAP-1 to interact with murine (M31 and M32) and human (HP1α and HP1γ) homologues of the HP1 protein family, a class of nonhistone heterochromatin-associated proteins with a well-established epigenetic gene silencing function in Drosophila. In vitro studies confirmed that KAP-1 is capable of directly interacting with M31 and hHP1α, which are normally found in centromeric heterochromatin, as well as M32 and hHP1γ, both of which are found in euchromatin. Mapping of the region in KAP-1 required for HP1 interaction showed that amino acid substitutions which abolish HP1 binding in vitro reduce KAP-1 mediated repression in vivo. We observed colocalization of KAP-1 with M31 and M32 in interphase nuclei, lending support to the biochemical evidence that M31 and M32 directly interact with KAP-1. The colocalization of KAP-1 with M31 is sometimes found in subnuclear territories of potential pericentromeric heterochromatin, whereas colocalization of KAP-1 and M32 occurs in punctate euchromatic domains throughout the nucleus. This work suggests a mechanism for the recruitment of HP1-like gene products by the KRAB-ZFP–KAP-1 complex to specific loci within the genome through formation of heterochromatin-like complexes that silence gene activity. We speculate that gene-specific repression may be a consequence of the formation of such complexes, ultimately leading to silenced genes in newly formed heterochromatic chromosomal environments.


2020 ◽  
Author(s):  
Pan Liu ◽  
Michael Ryczko ◽  
Xinfang Xie ◽  
Aftab Taiyab ◽  
Heather Sheardown ◽  
...  

AbstractVascular leak is a key driver of organ injury in diseases such as Acute Respiratory Distress Syndrome caused by viruses, including COVID-19. Strategies that reduce enhanced permeability and vascular inflammation are promising therapeutic targets. Activation of the Angiopoietin-1 (Angpt1)-Tie2 tyrosine kinase signaling pathway is an important regulator of vascular quiescence. Here we describe the design and construction of a new soluble ANGPT1 mimetic that is a potent activator of endothelial Tie2 in vitro and in vivo. Using a chimeric fusion strategy, we replaced the extracellular matrix (ECM) binding and oligomerization domain of ANGPT1 with a heptameric scaffold derived from the C-terminus of serum complement protein C4-binding protein α (C4BP). We refer to this new fusion protein biologic as C4BP-ANG1, which forms a stable heptamer and induces TIE2 phosphorylation in cultured cells, and in the lung following i.v. injection of mice. Injection of C4BP-ANG1 ameliorates VEGF- and lipopolysaccharide-induced vascular leakage, in keeping with the known functions of Angpt1-Tie2 in maintaining quiescent vascular stability, and therefore is a promising candidate treatment for inflammatory endothelial dysfunction.


2003 ◽  
Vol 375 (1) ◽  
pp. 121-129 ◽  
Author(s):  
Silvia A. PURRO ◽  
C. Gastón BISIG ◽  
María A. CONTIN ◽  
Héctor S. BARRA ◽  
Carlos A. ARCE

Detyrosination/tyrosination of tubulin is a post-translational modification that occurs at the C-terminus of the α-subunit, giving rise to microtubules rich in either tyrosinated or detyrosinated tubulin which coexist in the cell. We hereby report that the tyrosine analogue, azatyrosine, can be incorporated into the C-terminus of α-tubulin instead of tyrosine. Azatyrosine is structurally identical to tyrosine except that a nitrogen atom replaces carbon-2 of the phenolic group. Azatyrosine competitively excluded incorporation of [14C]tyrosine into tubulin of soluble brain extract. A newly developed rabbit antibody specific to C-terminal azatyrosine was used to study incorporation of azatyrosine in cultured cells. When added to the culture medium (Ham's F12K), azatyrosine was incorporated into tubulin of glioma-derived C6 cells. This incorporation was reversible, i.e. after withdrawal of azatyrosine, tubulin lost azatyrosine and reincorporated tyrosine. Azatyrosinated tubulin self-assembled into microtubules to a similar degree as total tubulin both in vitro and in vivo. Studies by other groups have shown that treatment of certain types of cultured cancer cells with azatyrosine leads to reversion of phenotype to normal, and that administration of azatyrosine into animals harbouring human proto-oncogenic c-Ha-ras prevents tumour formation. These interesting observations led us to study this phenomenon in relation to tubulin status. Under conditions in which tubulin was mostly azatyrosinated, C6 cells remained viable but did not proliferate. After 7–10 days under these conditions, morphology changed from a fused, elongated shape to a rounded soma with thin processes. Incorporation of azatyrosine into the C-terminus of α-tubulin is proposed as one possible cause of reversion of the malignant phenotype.


2004 ◽  
Vol 279 (50) ◽  
pp. 52456-52464 ◽  
Author(s):  
Chun-Ling Jiang ◽  
Seung-Gi Jin ◽  
Gerd P. Pfeifer

Methyl-CpG-binding domain proteins 2 and 3 (MBD2 and MBD3) are transcriptional repressors that contain methyl-CpG binding domains and are components of a CpG-methylated DNA binding complex named MeCP1. Methyl-CpG-binding protein 3-like 1 (MBD3L1) is a protein with substantial homology to MBD2 and MBD3, but it lacks the methyl-CpG binding domain. MBD3L1 interacts with MBD2 and MBD3in vitroand in yeast two-hybrid assays. Gel shift experiments with a CpG-methylated DNA probe indicate that recombinant MBD3L1 can supershift an MBD2-methylated DNA complex.In vivo, MBD3L1 associates with and colocalizes with MBD2 but not with MBD3 and is recruited to 5-methylcytosine-rich pericentromeric heterochromatin in mouse cells. In glutathioneS-transferase pull-down assays MBD3L1 is found associated with several known components of the MeCP1·NuRD complex, including HDAC1, HDAC2, MTA2, MBD2, RbAp46, and RbAp48, but MBD3 is not found in the MBD3L1-bound fraction. MBD3L1 enhances transcriptional repression of methylated DNA by MBD2. The data are consistent with a role of MBD3L1 as a methylation-dependent transcriptional repressor that may interchange with MBD3 as an MBD2-interacting component of the NuRD complex. MBD3L1 knockout mice were created and were found to be viable and fertile, indicating that MBD3L1 may not be essential or there is functional redundancy (through MBD3) in this pathway. Overall, this study reveals additional complexities in the mechanisms of transcriptional repression by the MBD family proteins.


2001 ◽  
Vol 82 (10) ◽  
pp. 2341-2351 ◽  
Author(s):  
Kelly J. Woytek ◽  
Dhandapani Rangasamy ◽  
Cynthia Bazaldua-Hernandez ◽  
Mike West ◽  
Van G. Wilson

The interaction between papillomavirus E1 and E2 proteins is essential for viral genome replication. Using both in vivo and in vitro assays to evaluate the regions of the two proteins necessary for the E1–E2 interaction, three independent interactions were identified for bovine papillomavirus E1: the N terminus of E1 (E1N, residues 1–311) interacts with the E2 transactivation domain (E2TAD) and the E2 DNA-binding domain (E2DBD) and the C terminus of E1 (E1C, residues 315–605) interacts with E2. Nine mutations within E1N were evaluated for their effects on E2 interaction. Five mutations eliminated interaction with the E2TAD; four of these were located within two previously identified conserved, hydrophilic regions, HR1 and HR3. Since HR1 and HR3 residues appear to comprise the origin of replication recognition element for E1, simultaneous interaction with the E2TAD during initiation complex formation would seem unlikely. Consistent with this inference is the fact that three of the five mutants defective for E2TAD binding exhibited wild-type levels of replication. The replication-positive phenotype of these mutants suggests that the E1N–E2TAD interaction is not essential for replication function and is probably involved in some other E1–E2 function, such as regulating transcription. Only one of the five mutations defective for E2TAD binding also prevented E2DBD interaction, indicating that the regions of E1N that interact with the E2TAD and the E2DBD are not identical. The ability of E1N to cooperatively interact with E2 bound to E2-binding site (E2BS) 11 versus E2BS12 was also examined, and cooperative binding was only observed when E2 was bound to E2BS12.


2001 ◽  
Vol 21 (7) ◽  
pp. 2259-2268 ◽  
Author(s):  
Wen-Shu Wu ◽  
Sadeq Vallian ◽  
Edward Seto ◽  
Wen-Ming Yang ◽  
Diane Edmondson ◽  
...  

ABSTRACT The growth suppressor promyelocytic leukemia protein (PML) is disrupted by the chromosomal translocation t(15;17) in acute promyelocytic leukemia (APL). PML plays a key role in multiple pathways of apoptosis and regulates cell cycle progression. The present study demonstrates that PML represses transcription by functionally and physically interacting with histone deacetylase (HDAC). Transcriptional repression mediated by PML can be inhibited by trichostatin A, a specific inhibitor of HDAC. PML coimmunoprecipitates a significant level of HDAC activity in several cell lines. PML is associated with HDAC in vivo and directly interacts with HDAC in vitro. The fusion protein PML-RARα encoded by the t(15;17) breakpoint interacts with HDAC poorly. PML interacts with all three isoforms of HDAC through specific domains, and its expression deacetylates histone H3 in vivo. Together, the results of our study show that PML modulates histone deacetylation and that loss of this function in APL alters chromatin remodeling and gene expression. This event may contribute to the development of leukemia.


1999 ◽  
Vol 10 (7) ◽  
pp. 2119-2129 ◽  
Author(s):  
Marcus P. Cooper ◽  
Adayabalam S. Balajee ◽  
Vilhelm A. Bohr

The protein p21Cip1, Waf1, Sdi1 is a potent inhibitor of cyclin-dependent kinases (CDKs). p21 can also block DNA replication through its interaction with the proliferating cell nuclear antigen (PCNA), which is an auxiliary factor for polymerase δ. PCNA is also implicated in the repair resynthesis step of nucleotide excision repair (NER). Previous studies have yielded contradictory results on whether p21 regulates NER through its interaction with PCNA. Resolution of this controversy is of interest because it would help understand how DNA repair and replication are regulated. Hence, we have investigated the effect of p21 on NER both in vitro and in vivo using purified fragments of p21 containing either the CDK-binding domain (N terminus) or the PCNA binding domain (C terminus) of the protein. In the in vitro studies, DNA repair synthesis was measured in extracts from normal human fibroblasts using plasmids damaged by UV irradiation. In the in vivo studies, we used intact and permeabilized cells. The results show that the C terminus of the p21 protein inhibits NER both in vitro and in vivo. These are the first in vivo studies in which this question has been examined, and we demonstrate that inhibition of NER by p21 is not merely an artificial in vitro effect. A 50% inhibition of in vitro NER occurred at a 50:1 molar ratio of p21 C-terminus fragment to PCNA monomer. p21 differentially regulates DNA repair and replication, with repair being much less sensitive to inhibition than replication. Our in vivo results suggest that the inhibition occurs at the resynthesis step of the repair process. It also appears that preassembly of PCNA at repair sites mitigates the inhibitory effect of p21. We further demonstrate that the inhibition of DNA repair is mediated via binding of p21 to PCNA. The N terminus of p21 had no effect on DNA repair, and the inhibition of DNA repair by the C terminus of p21 was relieved by the addition of purified PCNA protein.


1995 ◽  
Vol 15 (2) ◽  
pp. 861-871 ◽  
Author(s):  
K M Catron ◽  
H Zhang ◽  
S C Marshall ◽  
J A Inostroza ◽  
J M Wilson ◽  
...  

This study investigates the transcriptional properties of Msx-1, a murine homeodomain protein which has been proposed to play a key role in regulating the differentiation and/or proliferation state of specific cell populations during embryogenesis. We show, using basal and activated transcription templates, that Msx-1 is a potent repressor of transcription and can function through both TATA-containing and TATA-less promoters. Moreover, repression in vivo and in vitro occurs in the absence of DNA-binding sites for the Msx-1 homeodomain. Utilizing a series of truncated Msx-1 polypeptides, we show that multiple regions of Msx-1 contribute to repression, and these are rich in alanine, glycine, and proline residues. When fused to a heterologous DNA-binding domain, both N- and C-terminal regions of Msx-1 retain repressor function, which is dependent upon the presence of the heterologous DNA-binding site. Moreover, a polypeptide consisting of the full-length Msx-1 fused to a heterologous DNA-binding domain is a more potent repressor than either the N- or C-terminal regions alone, and this fusion retains the ability to repress transcription in the absence of the heterologous DNA site. We further show that Msx-1 represses transcription in vitro in a purified reconstituted assay system and interacts with protein complexes composed of TBP and TFIIA (DA) and TBP, TFIIA, and TFIIB (DAB) in gel retardation assays, suggesting that the mechanism of repression is mediated through interaction(s) with a component(s) of the core transcription complex. We speculate that the repressor function of Msx-1 is critical for its proposed role in embryogenesis as a regulator of cellular differentiation.


Sign in / Sign up

Export Citation Format

Share Document