scholarly journals The Growth Suppressor PML Represses Transcription by Functionally and Physically Interacting with Histone Deacetylases

2001 ◽  
Vol 21 (7) ◽  
pp. 2259-2268 ◽  
Author(s):  
Wen-Shu Wu ◽  
Sadeq Vallian ◽  
Edward Seto ◽  
Wen-Ming Yang ◽  
Diane Edmondson ◽  
...  

ABSTRACT The growth suppressor promyelocytic leukemia protein (PML) is disrupted by the chromosomal translocation t(15;17) in acute promyelocytic leukemia (APL). PML plays a key role in multiple pathways of apoptosis and regulates cell cycle progression. The present study demonstrates that PML represses transcription by functionally and physically interacting with histone deacetylase (HDAC). Transcriptional repression mediated by PML can be inhibited by trichostatin A, a specific inhibitor of HDAC. PML coimmunoprecipitates a significant level of HDAC activity in several cell lines. PML is associated with HDAC in vivo and directly interacts with HDAC in vitro. The fusion protein PML-RARα encoded by the t(15;17) breakpoint interacts with HDAC poorly. PML interacts with all three isoforms of HDAC through specific domains, and its expression deacetylates histone H3 in vivo. Together, the results of our study show that PML modulates histone deacetylation and that loss of this function in APL alters chromatin remodeling and gene expression. This event may contribute to the development of leukemia.

2002 ◽  
Vol 22 (13) ◽  
pp. 4890-4901 ◽  
Author(s):  
Sophie Deltour ◽  
Sébastien Pinte ◽  
Cateline Guerardel ◽  
Bohdan Wasylyk ◽  
Dominique Leprince

ABSTRACT HIC1 (hypermethylated in cancer) and its close relative HRG22 (HIC1-related gene on chromosome 22) encode transcriptional repressors with five C2H2 zinc fingers and an N-terminal BTB/POZ autonomous transcriptional repression domain that is unable to recruit histone deacetylases (HDACs). Alignment of the HIC1 and HRG22 proteins from various species highlighted a perfectly conserved GLDLSKK/R motif highly related to the consensus CtBP interaction motif (PXDLSXK/R), except for the replacement of the virtually invariant proline by a glycine. HIC1 strongly interacts with mCtBP1 both in vivo and in vitro through this conserved GLDLSKK motif, thus extending the CtBP consensus binding site. The BTB/POZ domain does not interact with mCtBP1, but the dimerization of HIC1 through this domain is required for the interaction with mCtBP1. When tethered to DNA by fusion with the Gal4 DNA-binding domain, the HIC1 central region represses transcription through interactions with CtBP in a trichostatin A-sensitive manner. In conclusion, our results demonstrate that HIC1 mediates transcriptional repression by both HDAC-independent and HDAC-dependent mechanisms and show that CtBP is a HIC1 corepressor that is recruited via a variant binding site.


2005 ◽  
Vol 25 (17) ◽  
pp. 7423-7431 ◽  
Author(s):  
Jenny S. L. Ho ◽  
Weili Ma ◽  
Daniel Y. L. Mao ◽  
Samuel Benchimol

ABSTRACT The ability of p53 to promote apoptosis and cell cycle arrest is believed to be important for its tumor suppression function. Besides activating the expression of cell cycle arrest and proapoptotic genes, p53 also represses a number of genes. Previous studies have shown an association between p53 activation and down-regulation of c-myc expression. However, the mechanism and physiological significance of p53-mediated c-myc repression remain unclear. Here, we show that c-myc is repressed in a p53-dependent manner in various mouse and human cell lines and mouse tissues. Furthermore, c-myc repression is not dependent on the expression of p21WAF1. Abrogating the repression of c-myc by ectopic c-myc expression interferes with the ability of p53 to induce G1 cell cycle arrest and differentiation but enhances the ability of p53 to promote apoptosis. We propose that p53-dependent cell cycle arrest is dependent not only on the transactivation of cell cycle arrest genes but also on the transrepression of c-myc. Chromatin immunoprecipitation assays indicate that p53 is bound to the c-myc promoter in vivo. We report that trichostatin A, an inhibitor of histone deacetylases, abrogates the ability of p53 to repress c-myc transcription. We also show that p53-mediated transcriptional repression of c-myc is accompanied by a decrease in the level of acetylated histone H4 at the c-myc promoter and by recruitment of the corepressor mSin3a. These data suggest that p53 represses c-myc transcription through a mechanism that involves histone deacetylation.


2012 ◽  
Vol 303 (10) ◽  
pp. F1443-F1453 ◽  
Author(s):  
Chung-Hsi Hsing ◽  
Chiou-Feng Lin ◽  
Edmund So ◽  
Ding-Ping Sun ◽  
Tai-Chi Chen ◽  
...  

Bone morphogenetic protein (BMP)-7 protects sepsis-induced acute kidney injury (AKI). Dexmedetomidine (DEX), an α2-adrenoceptor (α2-AR) agonist, has anti-inflammatory effects. We investigated the protective effects of DEX on sepsis-induced AKI and the expression of BMP-7 and histone deacetylases (HDACs). In vitro , the effects of DEX or trichostatin A (TSA, an HDAC inhibitor) on TNF-α, monocyte chemotactic protein (MCP-1), BMP-7, and HDAC mRNA expression in LPS-stimulated rat renal tubular epithelial NRK52E cells, was determined using real-time PCR. In vivo, mice were intraperitoneally injected with DEX (25 μg/kg) or saline immediately and 12 h after cecal ligation and puncture (CLP) surgery. Twenty-four hours after CLP, we examined kidney injury and renal TNF-α, MCP-1, BMP-7, and HDAC expression. Survival was monitored for 120 h. LPS increased HDAC2, HDAC5, TNF-α, and MCP-1 expression, but decreased BMP-7 expression in NRK52E cells. DEX treatment decreased the HDAC2, HDAC5, TNF-α, and MCP-1 expression, but increased BMP-7 and acetyl histone H3 expression, whose effects were blocked by yohimbine, an α2-AR antagonist. With DEX treatment, the LPS-induced TNF-α expression and cell death were attenuated in scRNAi-NRK52E but not BMP-7 RNAi-NRK52E cells. In CLP mice, DEX treatment increased survival and attenuated AKI. The expression of HDAC2, HDAC5, TNF-α, and MCP-1 mRNA in the kidneys of CLP mice was increased, but BMP-7 was decreased. However, DEX treatment reduced those changes. DEX reduces sepsis-induced AKI by decreasing TNF-α and MCP-1 and increasing BMP-7, which is associated with decreasing HDAC2 and HDAC5, as well as increasing acetyl histone H3.


2006 ◽  
Vol 203 (4) ◽  
pp. 821-828 ◽  
Author(s):  
Hiromichi Matsushita ◽  
Pier Paolo Scaglioni ◽  
Mantu Bhaumik ◽  
Eduardo M. Rego ◽  
Lu Fan Cai ◽  
...  

The promyelocytic leukemia–retinoic acid receptor α (PML-RARα) protein of acute promyelocytic leukemia (APL) is oncogenic in vivo. It has been hypothesized that the ability of PML-RARα to inhibit RARα function through PML-dependent aberrant recruitment of histone deacetylases (HDACs) and chromatin remodeling is the key initiating event for leukemogenesis. To elucidate the role of HDAC in this process, we have generated HDAC1–RARα fusion proteins and tested their activity and oncogenicity in vitro and in vivo in transgenic mice (TM). In parallel, we studied the in vivo leukemogenic potential of dominant negative (DN) and truncated RARα mutants, as well as that of PML-RARα mutants that are insensitive to retinoic acid. Surprisingly, although HDAC1-RARα did act as a bona fide DN RARα mutant in cellular in vitro and in cell culture, this fusion protein, as well as other DN RARα mutants, did not cause a block in myeloid differentiation in vivo in TM and were not leukemogenic. Comparative analysis of these TM and of TM/PML−/− and p53−/− compound mutants lends support to a model by which the RARα and PML blockade is necessary, but not sufficient, for leukemogenesis and the PML domain of the fusion protein provides unique functions that are required for leukemia initiation.


2006 ◽  
Vol 282 (7) ◽  
pp. 4470-4478 ◽  
Author(s):  
Tadahiro Shimazu ◽  
Sueharu Horinouchi ◽  
Minoru Yoshida

Trichostatin A (TSA), a specific inhibitor of histone deacetylases (HDACs), induces acetylation of various non-histone proteins such as p53 and α-tubulin. We purified several acetylated proteins by the affinity to an anti-acetylated lysine (AcLys) antibody from cells treated with TSA and identified them by mass spectrometry. Here we report on acetylation of CFIm25, a component of mammalian cleavage factor Im (CF Im), and poly(A) polymerase (PAP), a polyadenylating enzyme for the pre-mRNA 3′-end. The residues acetylated in these proteins were mapped onto the regions required for interaction with each other. Whereas CBP acetylated these proteins, HDAC1, HDAC3, HDAC10, SIRT1, and SIRT2 were involved in in vivo deacetylation. Acetylation of the CFIm25 occurred depending on the cleavage factor complex formation. Importantly, the interaction between PAP and CF Im complex was decreased by acetylation. We also demonstrated that acetylation of PAP inhibited the nuclear localization of PAP by inhibiting the binding to the importin α/β complex. These results suggest that CBP and HDACs regulate the 3′-end processing machinery and modulate the localization of PAP through the acetylation and deacetylation cycle.


2000 ◽  
Vol 20 (24) ◽  
pp. 9192-9202 ◽  
Author(s):  
Josephine E. Sutcliffe ◽  
Timothy R. P. Brown ◽  
Simon J. Allison ◽  
Pamela H. Scott ◽  
Robert J. White

ABSTRACT The retinoblastoma protein (RB) has been shown to suppress RNA polymerase (Pol) III transcription in vivo (R. J. White, D. Trouche, K. Martin, S. P. Jackson, and T. Kouzarides, Nature 382:88–90, 1996). This regulation involves interaction with TFIIIB, a multisubunit factor that is required for the expression of all Pol III templates (C. G. C. Larminie, C. A. Cairns, R. Mital, K. Martin, T. Kouzarides, S. P. Jackson, and R. J. White, EMBO J. 16:2061–2071, 1997; W.-M. Chu, Z. Wang, R. G. Roeder, and C. W. Schmid, J. Biol. Chem. 272:14755–14761, 1997). However, it has not been established why RB binding to TFIIIB results in transcriptional repression. For several Pol II-transcribed genes, RB has been shown to inhibit expression by recruiting histone deacetylases, which are thought to decrease promoter accessibility. We present evidence that histone deacetylases exert a negative effect on Pol III activity in vivo. However, RB remains able to regulate Pol III transcription in the presence of the histone deacetylase inhibitor trichostatin A. Instead, RB represses by disrupting interactions between TFIIIB and other components of the basal Pol III transcription apparatus. Recruitment of TFIIIB to most class III genes requires its binding to TFIIIC2, but this can be blocked by RB. In addition, RB disrupts the interaction between TFIIIB and Pol III that is essential for transcription. The ability of RB to inhibit these key interactions can explain its action as a potent repressor of class III gene expression.


1996 ◽  
Vol 16 (7) ◽  
pp. 3789-3798 ◽  
Author(s):  
X Huet ◽  
J Rech ◽  
A Plet ◽  
A Vié ◽  
J M Blanchard

Transcription of the gene coding for cyclin A, a protein required for S-phase transit, is cell cycle regulated and is restricted to proliferating cells. To further explore transcriptional regulation linked to cell division cycle control, a genomic clone containing 5' flanking sequences of the murine cyclin A gene was isolated. When it was fused to a luciferase reporter gene, it was shown to function as a proliferation-regulated promoter in NIH 3T3 cells. Transcription of the mouse cyclin A gene is negatively regulated by arrest of cell proliferation. A mutation of a GC-rich sequence conserved between mice and humans is sufficient to relieve transcriptional repression, resulting in a promoter with constitutively high activity. In agreement with this result, in vivo footprinting reveals a protection of the cell cycle-responsive element in G0/early G1 cells which is not observed at later stages of the cell cycle. Moreover, the footprint is present in dimethyl sulfoxide-induced differentiating and not in proliferating Friend erythroleukemia cells. Conversely, two other sites, which in vitro bind ATF-1 and NF-Y, respectively, are constitutively occupied throughout cell cycle progression.


2001 ◽  
Vol 21 (19) ◽  
pp. 6484-6494 ◽  
Author(s):  
Laurence Vandel ◽  
Estelle Nicolas ◽  
Olivier Vaute ◽  
Roger Ferreira ◽  
Slimane Ait-Si-Ali ◽  
...  

ABSTRACT The E2F transcription factor controls the cell cycle-dependent expression of many S-phase-specific genes. Transcriptional repression of these genes in G0 and at the beginning of G1by the retinoblasma protein Rb is crucial for the proper control of cell proliferation. Rb has been proposed to function, at least in part, through the recruitment of histone deacetylases. However, recent results indicate that other chromatin-modifying enzymes are likely to be involved. Here, we show that Rb also interacts with a histone methyltransferase, which specifically methylates K9 of histone H3. The results of coimmunoprecipitation experiments of endogenous or transfected proteins indicate that this histone methyltransferase is the recently described heterochromatin-associated protein Suv39H1. Interestingly, phosphorylation of Rb in vitro as well as in vivo abolished the Rb-Suv39H1 interaction. We also found that Suv39H1 and Rb cooperate to repress E2F activity and that Suv39H1 could be recruited to E2F1 through its interaction with Rb. Taken together, these data indicate that Suv39H1 is involved in transcriptional repression by Rb and suggest an unexpected link between E2F regulation and heterochromatin.


2002 ◽  
Vol 13 (4) ◽  
pp. 1427-1438 ◽  
Author(s):  
Christopher M. Armstrong ◽  
Matt Kaeberlein ◽  
Shin Ichiro Imai ◽  
Leonard Guarente

The yeast SIR2 gene and many of its homologs have been identified as NAD+-dependent histone deacetylases. To get a broader view of the relationship between the histone deacetylase activity of Sir2p and its in vivo functions we have mutated eight highly conserved residues in the core domain ofSIR2. These mutations have a range of effects on the ability of Sir2p to deacetylate histones in vitro and to silence genes at the telomeres and HM loci. Interestingly, there is not a direct correlation between the in vitro and in vivo effects in some of these mutations. We also show that the histone deacetylase activity of Sir2p is necessary for the proper localiztion of the SIR complex to the telomeres.


2005 ◽  
Vol 169 (4) ◽  
pp. 577-589 ◽  
Author(s):  
Siming Shen ◽  
Jiadong Li ◽  
Patrizia Casaccia-Bonnefil

Timely differentiation of progenitor cells is critical for development. In this study we asked whether global epigenetic mechanisms regulate timing of progenitor cell differentiation into myelin-forming oligodendrocytes in vivo. Histone deacetylation was essential during a specific temporal window of development and was dependent on the enzymatic activity of histone deacetylases, whose expression was detected in the developing corpus callosum. During the first 10 postnatal days, administration of valproic acid (VPA), the specific inhibitor for histone deacetylase activity, resulted in significant hypomyelination with delayed expression of late differentiation markers and retained expression of progenitor markers. Differentiation resumed in VPA-injected rats if a recovery period was allowed. Administration of VPA after myelination onset had no effect on myelin gene expression and was consistent with changes of nucleosomal histones from reversible deacetylation to more stable methylation and chromatin compaction. Together, these data identify global modifications of nucleosomal histones critical for timing of oligodendrocyte differentiation and myelination in the developing corpus callosum.


Sign in / Sign up

Export Citation Format

Share Document