scholarly journals Apoptosis Suppression by Raf-1 and MEK1 Requires MEK- and Phosphatidylinositol 3-Kinase-Dependent Signals

2001 ◽  
Vol 21 (7) ◽  
pp. 2324-2336 ◽  
Author(s):  
Alexander von Gise ◽  
Petra Lorenz ◽  
Claudia Wellbrock ◽  
Brian Hemmings ◽  
Friederike Berberich-Siebelt ◽  
...  

ABSTRACT Two Ras effector pathways leading to the activation of Raf-1 and phosphatidylinositol 3-kinase (PI3K) have been implicated in the survival signaling by the interleukin 3 (IL-3) receptor. Analysis of apoptosis suppression by Raf-1 demonstrated the requirement for mitochondrial translocation of the kinase in this process. This could be achieved either by overexpression of the antiapoptotic protein Bcl-2 or by targeting Raf-1 to the mitochondria via fusion to the mitochondrial protein Mas p70. Mitochondrially active Raf-1 is unable to activate extracellular signal-related kinase 1 (ERK1) and ERK2 but suppresses cell death by inactivating the proapoptotic Bcl-2 family member BAD. However, genetic and biochemical data also have suggested a role for the Raf-1 effector module MEK-ERK in apoptosis suppression. We thus tested for MEK requirement in cell survival signaling using the interleukin 3 (IL-3)-dependent cell line 32D. MEK is essential for survival and growth in the presence of IL-3. Upon growth factor withdrawal the expression of constitutively active MEK1 mutants significantly delays the onset of apoptosis, whereas the presence of a dominant negative mutant accelerates cell death. Survival signaling by MEK most likely results from the activation of ERKs since expression of a constitutively active form of ERK2 was as effective in protecting NIH 3T3 fibroblasts against doxorubicin-induced cell death as oncogenic MEK. The survival effect of activated MEK in 32D cells is achieved by both MEK- and PI3K-dependent mechanisms and results in the activation of PI3K and in the phosphorylation of AKT. MEK and PI3K dependence is also observed in 32D cells protected from apoptosis by oncogenic Raf-1. Additionally, we also could extend these findings to the IL-3-dependent pro-B-cell line BaF3, suggesting that recruitment of MEK is a common mechanism for survival signaling by activated Raf. Requirement for the PI3K effector AKT in this process is further demonstrated by the inhibitory effect of a dominant negative AKT mutant on Raf-1-induced cell survival. Moreover, a constitutively active form of AKT synergizes with Raf-1 in apoptosis suppression. In summary these data strongly suggest a Raf effector pathway for cell survival that is mediated by MEK and AKT.

2001 ◽  
Vol 356 (1) ◽  
pp. 143-149 ◽  
Author(s):  
Mireille CORMONT ◽  
Nadine GAUTIER ◽  
Karine ILC ◽  
Yannick Le MARCHAND-BRUSTEL

The small GTPase Rab4 has been shown to participate in the subcellular distribution of GLUT4 under both basal and insulin-stimulated conditions in adipocytes. In the present work, we have characterized the effect of Rab4 ΔCT, a prenylation-deficient and thus cytosolic form of Rab4, in this process. We show that the expression of Rab4 ΔCT in freshly isolated adipocytes inhibits insulin-induced GLUT4 translocation, but only when this protein is in its GTP-bound active form. Further, it not only blocks the effect of insulin, but also that of a hyperosmotic shock, but does not interfere with the effect of zinc ions on GLUT4 translocation. Rab4 ΔCT was then shown to prevent GLUT4 translocation induced by the expression of an active form of phosphatidylinositol 3-kinase or of protein kinase B, without altering the activities of the enzymes. Our results are consistent with a role of Rab4 ΔCT acting as a dominant negative protein towards Rab4, possibly by binding to Rab4 effectors.


Development ◽  
1996 ◽  
Vol 122 (8) ◽  
pp. 2529-2537
Author(s):  
G.S. Vemuri ◽  
F.A. McMorris

Signal transduction in response to several growth factors that regulate oligodendrocyte development and survival involves the activation of phosphatidylinositol 3-kinase, which we detect in oligodendrocytes and their precursors. To investigate the role of this enzyme activity, we analyzed cell survival in cultures of oligodendrocytes treated with wortmannin or LY294002, two potent inhibitors of phosphatidylinositol 3-kinase. Cell survival was inhibited by 60–70% in these cultures within 24 hours, as quantitated by a tetrazolium staining assay for viable cells and by measurement of DNA content. Similar results were obtained with oligodendrocyte precursor cells. Nuclei of the dying cells contained fragmented DNA, as revealed by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assays, indicating that the cells were dying by apoptosis. Moreover, a significant increase in the number of cells with fragmented nuclear DNA was detected as early as 4 hours, well before any significant differences could be detected in glucose transport or cell viability. Exogenous addition of insulin-like growth factor-I, neurotrophin-3, platelet-derived growth factor, basic fibroblast growth factor, ciliary neurotrophic factor, N-acetyl cysteine, vitamin C, vitamin E, progesterone or serum did not prevent cell death in the presence of wortmannin or LY294002. These findings indicate that survival of oligodendrocytes and their precursors depends on a phosphatidylinositol 3-kinase mediated signaling pathway. Inhibition of this critical enzyme activity induces apoptotic cell death, even in the presence of exogenous growth factors or serum.


1996 ◽  
Vol 271 (41) ◽  
pp. 25227-25232 ◽  
Author(s):  
Jean-François Tanti ◽  
Thierry Grémeaux ◽  
Sophie Grillo ◽  
Véronique Calleja ◽  
Anke Klippel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document