scholarly journals The Transcription Factor B-Myb Is Maintained in an Inhibited State in Target Cells through Its Interaction with the Nuclear Corepressors N-CoR and SMRT

2002 ◽  
Vol 22 (11) ◽  
pp. 3663-3673 ◽  
Author(s):  
Xiaolin Li ◽  
Donald P. McDonnell

ABSTRACT The B-Myb transcription factor has been implicated in coordinating the expression of genes involved in cell cycle regulation. Although it is expressed in a ubiquitous manner, its transcriptional activity is repressed until the G1-S phase of the cell cycle by an unknown mechanism. In this study we used biochemical and cell-based assays to demonstrate that the nuclear receptor corepressors N-CoR and SMRT interact with B-Myb. The significance of these B-Myb-corepressor interactions was confirmed by the finding that B-Myb mutants, which were unable to bind N-CoR, exhibited constitutive transcriptional activity. It has been shown previously that phosphorylation of B-Myb by cdk2/cyclin A enhances its transcriptional activity. We have now determined that phosphorylation by cdk2/cyclin A blocks the interaction between B-Myb and N-CoR and that mutation of the corepressor binding site within B-Myb bypasses the requirement for this phosphorylation event. Cumulatively, these findings suggest that the nuclear corepressors N-CoR and SMRT serve a previously unappreciated role as regulators of B-Myb transcriptional activity.

2016 ◽  
Vol 14 (1) ◽  
pp. nrs.14001 ◽  
Author(s):  
Yingfeng Zheng ◽  
Leigh C. Murphy

Cell cycle progression is tightly controlled by several kinase families including Cyclin-Dependent Kinases, Polo-Like Kinases, and Aurora Kinases. A large amount of data show that steroid hormone receptors and various components of the cell cycle, including cell cycle regulated kinases, interact, and this often results in altered transcriptional activity of the receptor. Furthermore, steroid hormones, through their receptors, can also regulate the transcriptional expression of genes that are required for cell cycle regulation. However, emerging data suggest that steroid hormone receptors may have roles in cell cycle progression independent of their transcriptional activity. The following is a review of how steroid receptors and their coregulators can regulate or be regulated by the cell cycle machinery, with a particular focus on roles independent of transcription in G2/M.


Cell ◽  
1991 ◽  
Vol 65 (7) ◽  
pp. 1243-1253 ◽  
Author(s):  
Maria Mudryj ◽  
Stephen H. Devoto ◽  
Scott W. Hiebert ◽  
Tony Hunter ◽  
Jonathon Pines ◽  
...  

2016 ◽  
Vol 424 (1-2) ◽  
pp. 211-211
Author(s):  
Marta Moskot ◽  
Joanna Jakóbkiewicz-Banecka ◽  
Elwira Smolińska ◽  
Ewa Piotrowska ◽  
Grzegorz Węgrzyn ◽  
...  

Cancer Cell ◽  
2018 ◽  
Vol 34 (4) ◽  
pp. 626-642.e8 ◽  
Author(s):  
Natalia Martinez-Soria ◽  
Lynsey McKenzie ◽  
Julia Draper ◽  
Anetta Ptasinska ◽  
Hasan Issa ◽  
...  

Blood ◽  
2004 ◽  
Vol 103 (3) ◽  
pp. 828-835 ◽  
Author(s):  
Sigal Gery ◽  
Adrian F. Gombart ◽  
Yuen K. Fung ◽  
H. Phillip Koeffler

AbstractCCAAT enhancer binding protein epsilon (C/EBPϵ) is a myeloid specific transcription factor that is essential for terminal granulocytic differentiation. Retinoblastoma (Rb) and E2F1 are critical cell cycle regulators that also have been implicated in several differentiation systems. Here, we demonstrate that C/EBPϵ interacts with Rb and E2F1 during granulocytic differentiation in NB4 and U937 human myeloid cells and in 32Dcl3 murine myeloid precursor cells. The interaction between C/EBPϵ and Rb enhances C/EBPϵ-mediated transcription of myeloid specific genes both in reporter assays and endogenously. The C/EBPϵ-E2F1 interaction results in repression of E2F1-mediated transcriptional activity. Finally, overexpression of C/EBPϵ in human myeloid cells leads to down-regulation of c-Myc. We propose that the interactions between C/EBPϵ, a tissue-specific transcription factor, and the broad-spectrum proteins, Rb and E2F1, are important in C/EBPϵ-induced terminal granulocytic differentiation.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2519-2519
Author(s):  
Stephan Lindsey ◽  
Eleftherios Papoutsakis

Abstract Abstract 2519 Poster Board II-496 Understanding the mechanisms underlying megakaryocytic (Mk) differentiation and maturation is vital to the discovery of novel approaches to treating Mk and platelet disorders such as thrombocytopenia, megakaryoblastic leukemia, and thrombocythemia. The number of platelets released is proportional to the amount of DNA present in a given Mk, so insights into the molecular basis of Mk polyploidization could inspire improved ex vivo culturing methods to promote Mk commitment, expansion, and differentiation, leading to improved autologous transfusion protocols to offset thrombocytopenia associated with HSC transplants following high-dose chemotherapy or MDS progression. Microarray analyses on ex vivo Mk-differentiated primary human CD34+ cells showed that mRNA levels of the Aryl Hydrocarbon Receptor (AhR) increased during Mk differentiation and was elevated 4–6 fold in Mks compared to isogenic granulocytic cultures. These data were further confirmed by quantitative(Q)-RT-PCR analysis of differentiating Mks derived from primary human CD34+ cells as well as from CHRF cells (human megakaryoblastic leukemia). We have shown that CHRF cells are a valid model of human Mk differentiation (Fuhrken PG et al. Exp Hematol, 2007; 35:476–489). Thus, we hypothesized that AhR may act as a novel Mk transcription factor, possibly by influencing or regulating Mk polyploidization. Known as a “toxin sensor”, AhR is involved in the mechanism of action of environmental toxins, likely by altering cell cycle regulation. Epidemiological studies of toxic waste spills and Vietnam veterans suggest that exposure to known AhR ligands may result in increased platelet counts proportional to dioxin exposure level (Webb K et al. Am J Ind Med, 1987;11:685–691, Michalek JE Arch Environ Health, 2001; 56:396–405). These studies offer the intriguing possibility that AhR activation modulates megakaryocyte differentiation and/or platelet production. Interestingly, AhR influences the differentiation of other myeloid lineages including monocytes (Hayashi S et al. Carcinogenesis, 1995; 16:1403–1409) and is upregulated after leukocyte activation (Crawford RB et al. Mol Pharmacol, 1997; 52:921–927). Western blot analyses determined that although initially expressed in both the cytoplasm and nucleus, AhR became solely nuclear in differentiating CHRF cells. EMSA analysis using CHRF nuclear extracts demonstrated that AhR binding to a consensus binding sequence increased as megakaryopoiesis progressed (n=3). Increased AhR-DNA binding during CHRF Mk differentiation correlated with 4.6-fold increased mRNA expression of the AhR transcriptional target Hes1 (n=3, p<0.005), a known cell-cycle regulator and mediator of notch signaling. In order to examine the functional role of AhR in megakaryopoiesis, we generated 3 independent AhR knockdown (KD) CHRF cell lines. Depending on the day of culture, AhR-KD CHRF cell lines differentiated into Mk cells expressed 2-3 fold less AhR mRNA (n=3; p<0.02), 40–60% less AhR protein (n=3), 2.7 times less Hes1 mRNA (n=3; p=0.018), displayed Mk-ploidy distributions shifted towards lower ploidy classes, and were incapable of reaching higher ploidy classes (i.e., ≥32n) seen in control cells. Ploidy levels on day 7 (maximal ploidy in control cells) were 3-fold lower in AhR-KD CHRF cells (n=3; p=0.012 or p=0.005 depending on KD cell line). AhR KD resulted in increased DNA synthesis of low ploidy (<8n; n=3; p<0.05) without influencing apoptosis (n=3, p=0.37). These data suggest that AhR may regulate the cell cycle differently in Mks compared to other cell types, where loss of AhR results in cell cycle blockage and increased apoptosis. As such, AhR deregulation provides a mechanistic explanation for chemical-induced thrombocytopenia, including chemotherapy, and suggests that AhR agonists may provide novel therapies for megakaryoblastic leukemia. AhR-mediated expression of Hes1, an established regulator of the Notch signaling pathway, provides a novel molecular model of endomitotic entry and Mk polyploidization; in drosophila, Notch cell-cycle regulation controls the initial switch toward endomitosis. Disclosures: No relevant conflicts of interest to declare.


Tumor Biology ◽  
2017 ◽  
Vol 39 (7) ◽  
pp. 101042831771978 ◽  
Author(s):  
Xiaoran Duan ◽  
Yongli Yang ◽  
Sihua Wang ◽  
Xiaolei Feng ◽  
Tuanwei Wang ◽  
...  

1995 ◽  
Vol 14 (18) ◽  
pp. 4514-4522 ◽  
Author(s):  
J. Zwicker ◽  
F. C. Lucibello ◽  
L. A. Wolfraim ◽  
C. Gross ◽  
M. Truss ◽  
...  

1994 ◽  
Vol 14 (12) ◽  
pp. 8322-8332
Author(s):  
R Martinelli ◽  
N Heintz

H1TF2 is a CCAAT transcription factor that binds to the histone H1 subtype-specific consensus sequence, which has previously been shown to be necessary for temporal regulation of histone H1 transcription during the cell cycle (F. La Bella, P. Gallinari, J. McKinney, and N. Heintz, Genes Dev. 3:1982-1990, 1989). In this study, we report that H1TF2 is a heteromeric CCAAT-binding protein composed of two polypeptide doublets of 33 and 34 kDa and 43 and 44 kDa that are not antigenically related. The 33- and 34-kDa species were not detected in our previous studies (P. Gallinari, F. La Bella, and N. Heintz, Mol. Cell. Biol. 9:1566-1575, 1989) because of technical problems in detection of these heavily glycosylated subunits. The cloning of H1TF2A, the large subunit of this factor, reveals it to be a glutamine-rich protein with extremely limited similarity to previously cloned CCAAT-binding proteins. A monospecific antiserum produced against bacterially synthesized H1TF2A was used to establish that HeLa cell H1TF2A is phosphorylated in vivo and that, in contrast to the H2b transcription factor Oct1 (S. B. Roberts, N. Segil, and N. Heintz, Science 253:1022-1026, 1991; N. Segil, S. B. Roberts, and N. Heintz, Cold Spring Harbor Symp. Quant. Biol. 56:285-292, 1991), no gross change in H1TF2A phosphorylation is evident during the cell cycle. Further immunoprecipitation studies demonstrated that H1TF2 is heterodimeric in the absence of DNA in vivo and identified several H1TF2-interacting proteins that may play a role in H1TF2 function in vivo.


Sign in / Sign up

Export Citation Format

Share Document