scholarly journals Counterregulation of Chromatin Deacetylation and Histone Deacetylase Occupancy at the Integrated Promoter of Human Immunodeficiency Virus Type 1 (HIV-1) by the HIV-1 Repressor YY1 and HIV-1 Activator Tat

2002 ◽  
Vol 22 (9) ◽  
pp. 2965-2973 ◽  
Author(s):  
Guocheng He ◽  
David M. Margolis

ABSTRACT Repression of human immunodeficiency virus type 1 (HIV-1) transcription may contribute to the establishment or maintenance of proviral quiescence in infected CD4+ cells. The host factors YY1 and LSF cooperatively recruit histone deacetylase 1 (HDAC1) to the HIV-1 long terminal repeat (LTR) and inhibit transcription. We demonstrate here regulation of occupancy of HDAC1 at a positioned nucleosome (nuc 1) near the transcription start site of integrated LTR. We find that expression of YY1 increases occupancy by HDAC1, decreases acetylation at nuc 1, and downregulates LTR expression. HDAC1 recruitment and histone hypoacetylation were also seen when Tat activation was inhibited by the overexpression of YY1. A YY1 mutant without an HDAC1 interaction domain and incompetent to inhibit LTR activation fails to recruit HDAC1 to LTR or decrease nuc 1 acetylation. Further, expression of a dominant-negative mutant of LSF (dnLSF), which inhibits LSF occupancy and LTR repression, results in acetylation and decreased HDAC1 occupancy at nuc 1. Conversely, exposure of cells to the histone deacetylase inhibitor trichostatin A or activation of LTR expression by HIV-1 Tat results in the displacement of HDAC1 from nuc 1, in association with increased acetylation of histone H4. Recruitment of HDAC1 to the LTR nuc 1 can counteract Tat activation and repress LTR expression. Significantly, when repression is overcome, LTR activation is associated with decreased HDAC1 occupancy. Since the persistence of integrated HIV-1 genomes despite potent suppression of viral replication is a major obstacle for current antiretroviral therapy, strategies to selectively disrupt the quiescence of chromosomal provirus may play a role in the future treatment of AIDS.

2007 ◽  
Vol 81 (20) ◽  
pp. 10914-10923 ◽  
Author(s):  
Guochun Jiang ◽  
Amy Espeseth ◽  
Daria J. Hazuda ◽  
David M. Margolis

ABSTRACT Histone deacetylase (HDAC) inhibitors such as valproic acid (VPA) induce the expression of quiescent proviral human immunodeficiency virus type 1 (HIV-1) and may deplete proviral infection in vivo. To uncover novel molecular mechanisms that maintain HIV latency, we sought cellular mRNAs whose expression was diminished in resting CD4+ T cells of HIV-1-infected patients exposed to VPA. c-Myc was prominent among genes markedly downregulated upon exposure to VPA. c-Myc expression repressed HIV-1 expression in chronically infected cell lines. Chromatin immunoprecipitation (ChIP) assays revealed that c-Myc and HDAC1 are coordinately resident at the HIV-1 long terminal repeat (LTR) promoter and absent from the promoter after VPA treatment in concert with histone acetylation, RNA polymerase II recruitment, and LTR expression. Sequential ChIP assays demonstrated that c-Myc, Sp1, and HDAC1 coexist in the same DNA-protein complex at the HIV promoter. Short hairpin RNA inhibition of c-Myc reduces both c-Myc and HDAC1 occupancy, blocks c-Myc repression of Tat activation, and increases LTR expression. These results expand the understanding of mechanisms that recruit HDAC and maintain the latency of HIV-1, suggesting novel therapeutic approaches against latent proviral HIV infection.


2009 ◽  
Vol 83 (20) ◽  
pp. 10448-10459 ◽  
Author(s):  
Tareq Jaber ◽  
Christopher R. Bohl ◽  
Gentry L. Lewis ◽  
Charles Wood ◽  
John T. West ◽  
...  

ABSTRACT Ubc9 was identified as a cellular protein that interacts with the Gag protein of Mason-Pfizer monkey virus. We show here that Ubc9 also interacts with the human immunodeficiency virus type 1 (HIV-1) Gag protein and that their interaction is important for virus replication. Gag was found to colocalize with Ubc9 predominantly at perinuclear puncta. While cells in which Ubc9 expression was suppressed with RNA interference produced normal numbers of virions, these particles were 8- to 10-fold less infectious than those produced in the presence of Ubc9. The nature of this defect was assayed for dependence on Ubc9 during viral assembly, trafficking, and Env incorporation. The Gag-mediated assembly of virus particles and protease-mediated processing of Gag and Gag-Pol were unchanged in the absence of Ubc9. However, the stability of the cell-associated Env glycoprotein was decreased and Env incorporation into released virions was altered. Interestingly, overexpression of the Ubc9 trans-dominant-negative mutant C93A, which is a defective E2-SUMO-1 conjugase, suggests that this activity may not be required for interaction with Gag, virion assembly, or infectivity. This finding demonstrates that Ubc9 plays an important role in the production of infectious HIV-1 virions.


2000 ◽  
Vol 74 (15) ◽  
pp. 6790-6799 ◽  
Author(s):  
Jason J. Coull ◽  
Fabio Romerio ◽  
Jian-Min Sun ◽  
Janet L. Volker ◽  
Katherine M. Galvin ◽  
...  

ABSTRACT Enigmatic mechanisms restore the resting state in activated lymphocytes following human immunodeficiency virus type 1 (HIV-1) infection, rarely allowing persistent nonproductive infection. We detail a mechanism whereby cellular factors could establish virological latency. The transcription factors YY1 and LSF cooperate in repression of transcription from the HIV-1 long terminal repeat (LTR). LSF recruits YY1 to the LTR via the zinc fingers of YY1. The first two zinc fingers were observed to be sufficient for this interaction in vitro. A mutant of LSF incapable of binding DNA blocked repression. Like other transcriptional repressors, YY1 can function via recruitment of histone deacetylase (HDAC). We find that HDAC1 copurifies with the LTR-binding YY1-LSF repressor complex, the domain of YY1 that interacts with HDAC1 is required to repress the HIV-1 promoter, expression of HDAC1 augments repression of the LTR by YY1, and the deacetylase inhibitor trichostatin A blocks repression mediated by YY1. This novel link between HDAC recruitment and inhibition of HIV-1 expression by YY1 and LSF, in the natural context of a viral promoter integrated into chromosomal DNA, is the first demonstration of a molecular mechanism of repression of HIV-1. YY1 and LSF may establish transcriptional and virological latency of HIV, a state that has recently been recognized in vivo and has significant implications for the long-term treatment of AIDS.


2002 ◽  
Vol 76 (21) ◽  
pp. 11091-11103 ◽  
Author(s):  
Vincent Quivy ◽  
Emmanuelle Adam ◽  
Yves Collette ◽  
Dominique Demonte ◽  
Alain Chariot ◽  
...  

ABSTRACT The transcription factor NF-κB plays a central role in the human immunodeficiency virus type 1 (HIV-1) activation pathway. HIV-1 transcription is also regulated by protein acetylation, since treatment with deacetylase inhibitors such as trichostatin A (TSA) or sodium butyrate (NaBut) markedly induces HIV-1 transcriptional activity of the long terminal repeat (LTR) promoter. Here, we demonstrate that TSA (NaBut) synergized with both ectopically expressed p50/p65 and tumor necrosis factor alpha/SF2 (TNF)-induced NF-κB to activate the LTR. This was confirmed for LTRs from subtypes A through G of the HIV-1 major group, with a positive correlation between the number of κB sites present in the LTRs and the amplitude of the TNF-TSA synergism. Mechanistically, TSA (NaBut) delayed the cytoplasmic recovery of the inhibitory protein IκBα. This coincided with a prolonged intranuclear presence and DNA binding activity of NF-κB. The physiological relevance of the TNF-TSA (NaBut) synergism was shown on HIV-1 replication in both acutely and latently HIV-infected cell lines. Therefore, our results open new therapeutic strategies aimed at decreasing or eliminating the pool of latently HIV-infected reservoirs by forcing viral expression.


1999 ◽  
Vol 73 (8) ◽  
pp. 7080-7086 ◽  
Author(s):  
Francesca Demarchi ◽  
Maria Ines Gutierrez ◽  
Mauro Giacca

ABSTRACT The transactivator protein of human immunodeficiency virus type 1 (HIV-1) (Tat) is a powerful activator of nuclear factor-κB (NF-κB), acting through degradation of the inhibitor IκB-α (F. Demarchi, F. d’Adda di Fagagna, A. Falaschi, and M. Giacca, J. Virol. 70:4427–4437, 1996). Here, we show that this activity of Tat requires the function of the cellular interferon-inducible protein kinase PKR. Tat-mediated NF-κB activation and transcriptional induction of the HIV-1 long terminal repeat were impaired in murine cells in which the PKR gene was knocked out. Both functions were restored by cotransfection of Tat with the cDNA for PKR. Expression of a dominant-negative mutant of PKR specifically reduced the levels of Tat transactivation in different human cell types. Activation of NF-κB by Tat required integrity of the basic domain of Tat; previous studies have indicated that this domain is necessary for specific Tat-PKR interaction.


mBio ◽  
2021 ◽  
Author(s):  
Xinyi Yang ◽  
Xiaying Zhao ◽  
Yuqi Zhu ◽  
Yinzhong Shen ◽  
Yanan Wang ◽  
...  

The primary reason why AIDS cannot be completely cured is the existence of a latent HIV-1 reservoir. Currently, the facts of HIV-1 latency, including its establishment and maintenance, are incomplete.


Sign in / Sign up

Export Citation Format

Share Document