scholarly journals The Critical cis-Acting Element Required for IMD2 Feedback Regulation by GDP Is a TATA Box Located 202 Nucleotides Upstream of the Transcription Start Site

2003 ◽  
Vol 23 (17) ◽  
pp. 6267-6278 ◽  
Author(s):  
Mafalda Escobar-Henriques ◽  
Bertrand Daignan-Fornier ◽  
Martine A. Collart

ABSTRACT Guanylic nucleotides are essential cellular players, and the critical enzyme in their tightly regulated synthesis in Saccharomyces cerevisiae is encoded by the IMD2 gene. The transcription of IMD2 is subject to general repression by nutrient limitation through the cis nutrient-sensing element. It is also subject to specific feedback regulation by the end products of the guanylic nucleotide synthesis pathway. The critical cis element for this latter mechanism is the guanine response element (GRE), a TATAATA sequence which is located 202 nucleotides upstream of the transcription initiation site and which functions as the IMD2 TATA box. We show that the GRE functions in conjunction with a 52-nucleotide stretch near the transcription start site. This very unusual promoter structure ensures low, basal expression of IMD2 and the recruitment of TFIID to the GRE in response to guanylic nucleotide limitation.

2002 ◽  
Vol 22 (19) ◽  
pp. 6697-6705 ◽  
Author(s):  
Jennifer A. Fairley ◽  
Rachel Evans ◽  
Nicola A. Hawkes ◽  
Stefan G. E. Roberts

ABSTRACT The general transcription factor TFIIB plays a central role in the selection of the transcription initiation site. The mechanisms involved are not clear, however. In this study, we analyze core promoter features that are responsible for the susceptibility to mutations in TFIIB and cause a shift in the transcription start site. We show that TFIIB can modulate both the 5′ and 3′ parameters of transcription start site selection in a manner dependent upon the sequence of the initiator. Mutations in TFIIB that cause aberrant transcription start site selection concentrate in a region that plays a pivotal role in modulating TFIIB conformation. Using epitope-specific antibody probes, we show that a TFIIB mutant that causes aberrant transcription start site selection assembles at the promoter in a conformation different from that for wild-type TFIIB. In addition, we uncover a core promoter-dependent effect on TFIIB conformation and provide evidence for novel sequence-specific TFIIB promoter contacts.


1991 ◽  
Vol 11 (10) ◽  
pp. 5190-5196
Author(s):  
S K Pal ◽  
S S Zinkel ◽  
A A Kiessling ◽  
G M Cooper

We have employed transient expression assays to analyze the sequences that direct c-mos transcription in mouse oocytes. Plasmids containing the chloramphenicol acetyltransferase (CAT) gene fused to either a 2.4-kb or a 731-bp fragment from the 5'-flanking region of c-mos produced similar levels of CAT activity when injected into nuclei of growing oocytes. BAL 31 deletions revealed that sequences up to 20 bp upstream of the major transcription start site could be removed without any significant loss of CAT activity. Promoter activity only decreased when these deletions closely approached the transcription start site, which was mapped at 53 nucleotides upstream of the first ATG in the c-mos open reading frame. On the other hand, deletion of sequences within 20 nucleotides downstream of the transcription initiation site resulted in a 10-fold reduction in CAT expression. A similar decrease in promoter activity was observed as a result of point mutations in these 5' untranslated sequences. Thus, sequences immediately downstream of the transcription start site, including a consensus sequence (PyPyCAPyPyPyPyPy) present in the initiator elements of several genes, appear to regulate c-mos expression in mouse oocytes. Reverse transcription-polymerase chain reaction analysis of RNA from injected oocytes showed that this regulation is manifest at the transcriptional level. Expression of c-mos in mouse oocytes thus appears to be directed by a simple promoter consisting only of sequences immediately surrounding the transcription start site, including an initiator element in the untranslated leader.


1991 ◽  
Vol 11 (10) ◽  
pp. 5190-5196 ◽  
Author(s):  
S K Pal ◽  
S S Zinkel ◽  
A A Kiessling ◽  
G M Cooper

We have employed transient expression assays to analyze the sequences that direct c-mos transcription in mouse oocytes. Plasmids containing the chloramphenicol acetyltransferase (CAT) gene fused to either a 2.4-kb or a 731-bp fragment from the 5'-flanking region of c-mos produced similar levels of CAT activity when injected into nuclei of growing oocytes. BAL 31 deletions revealed that sequences up to 20 bp upstream of the major transcription start site could be removed without any significant loss of CAT activity. Promoter activity only decreased when these deletions closely approached the transcription start site, which was mapped at 53 nucleotides upstream of the first ATG in the c-mos open reading frame. On the other hand, deletion of sequences within 20 nucleotides downstream of the transcription initiation site resulted in a 10-fold reduction in CAT expression. A similar decrease in promoter activity was observed as a result of point mutations in these 5' untranslated sequences. Thus, sequences immediately downstream of the transcription start site, including a consensus sequence (PyPyCAPyPyPyPyPy) present in the initiator elements of several genes, appear to regulate c-mos expression in mouse oocytes. Reverse transcription-polymerase chain reaction analysis of RNA from injected oocytes showed that this regulation is manifest at the transcriptional level. Expression of c-mos in mouse oocytes thus appears to be directed by a simple promoter consisting only of sequences immediately surrounding the transcription start site, including an initiator element in the untranslated leader.


2016 ◽  
Vol 113 (21) ◽  
pp. E2899-E2905 ◽  
Author(s):  
Irina O. Vvedenskaya ◽  
Hanif Vahedian-Movahed ◽  
Yuanchao Zhang ◽  
Deanne M. Taylor ◽  
Richard H. Ebright ◽  
...  

During transcription initiation, RNA polymerase (RNAP) holoenzyme unwinds ∼13 bp of promoter DNA, forming an RNAP-promoter open complex (RPo) containing a single-stranded transcription bubble, and selects a template-strand nucleotide to serve as the transcription start site (TSS). In RPo, RNAP core enzyme makes sequence-specific protein–DNA interactions with the downstream part of the nontemplate strand of the transcription bubble (“core recognition element,” CRE). Here, we investigated whether sequence-specific RNAP–CRE interactions affect TSS selection. To do this, we used two next-generation sequencing-based approaches to compare the TSS profile of WT RNAP to that of an RNAP derivative defective in sequence-specific RNAP–CRE interactions. First, using massively systematic transcript end readout, MASTER, we assessed effects of RNAP–CRE interactions on TSS selection in vitro and in vivo for a library of 47 (∼16,000) consensus promoters containing different TSS region sequences, and we observed that the TSS profile of the RNAP derivative defective in RNAP–CRE interactions differed from that of WT RNAP, in a manner that correlated with the presence of consensus CRE sequences in the TSS region. Second, using 5′ merodiploid native-elongating-transcript sequencing, 5′ mNET-seq, we assessed effects of RNAP–CRE interactions at natural promoters in Escherichia coli, and we identified 39 promoters at which RNAP–CRE interactions determine TSS selection. Our findings establish RNAP–CRE interactions are a functional determinant of TSS selection. We propose that RNAP–CRE interactions modulate the position of the downstream end of the transcription bubble in RPo, and thereby modulate TSS selection, which involves transcription bubble expansion or transcription bubble contraction (scrunching or antiscrunching).


2007 ◽  
Vol 82 (2) ◽  
pp. 849-858 ◽  
Author(s):  
Hiroki Isomura ◽  
Mark F. Stinski ◽  
Ayumi Kudoh ◽  
Sanae Nakayama ◽  
Takayuki Murata ◽  
...  

ABSTRACT The promoter of the major immediate-early (MIE) genes of human cytomegalovirus (HCMV), also referred to as the CMV promoter, possesses a cis-acting element positioned downstream of the TATA box between positions −14 and −1 relative to the transcription start site (+1). We determined the role of the cis-acting element in viral replication by comparing recombinant viruses with the cis-acting element replaced with other sequences. Recombinant virus with the simian CMV counterpart replicated efficiently in human foreskin fibroblasts, as well as wild-type virus. In contrast, replacement with the murine CMV counterpart caused inefficient MIE gene transcription, RNA splicing, MIE and early viral gene expression, and viral DNA replication. To determine which nucleotides in the cis-acting element are required for efficient MIE gene transcription and splicing, we constructed mutations within the cis-acting element in the context of a recombinant virus. While mutations in the cis-acting element have only a minor effect on in vitro transcription, the effects on viral replication are major. The nucleotides at −10 and −9 in the cis-acting element relative to the transcription start site (+1) affect efficient MIE gene transcription and splicing at early times after infection. The cis-acting element also acts as a cis-repression sequence when the viral IE86 protein accumulates in the infected cell. We demonstrate that the cis-acting element has an essential role in viral replication.


1999 ◽  
Vol 181 (8) ◽  
pp. 2513-2518 ◽  
Author(s):  
Nitin S. Baliga ◽  
Shiladitya DasSarma

ABSTRACT Degenerate oligonucleotides were used to randomize 21 bp of the 53-bp minimal bop promoter in three 7-bp segments, including the putative TATA box and the upstream activator sequence (UAS). The mutagenized bop promoter and the wild-type structural gene and transcriptional terminator were inserted into a shuttle plasmid capable of replication in the halophilic archaeonHalobacterium sp. strain S9. Active promoters were isolated by screening transformants of an orange (Pum− bop) Halobacterium mutant for purple (Pum+ bop +) colonies on agar plates and analyzed for bop mRNA and/or bacteriorhodopsin content. Sequence analysis yielded the consensus sequence 5′-tyT(T/a)Ta-3′, corresponding to the promoter TATA box element 30 to 25 bp 5′ of the transcription start site. A putative UAS, 5′-ACCcnactagTTnG-3′, located 52 to 39 bp 5′ of the transcription start site was found to be conserved in active promoters. This study provides direct evidence for the requirement of the TATA box and UAS for bop promoter activity.


1987 ◽  
Author(s):  
Corolyn J Collins ◽  
Richard B Levene ◽  
Christina P Ravera ◽  
Marker J Dombalagian ◽  
David M Livingston ◽  
...  

Most patients with von Willebrand's disease appear to have a defect affecting the level of expression of the von Willebrand factor (vWf) gene. Thus, an understanding of the pathogenesis of von Willebrand's disease will require an analysis of the structure and function of the vWf gene in normals and in patients. To begin such analyses, we have screened a human genomic cosmid library with probes obtained from vWf cDNA and isolated a colinear segment spanning ≈175 kb in five overlapping clones. This segment extends ≈25 kb upstream and ≈5 kb downstream of the transcription start and stop sites for vWf mRNA, implying the vWf gene has a length of ≈150 kb. Within one of these clones, the vWf transcription initiation sites have been mapped. A portion of the promoter region has been sequenced, revealing a typical TATA box, a downstream CCAAT box, and a perfect downstream repeat of the 8 base pairs containing the major transcription start site. Primer extension analysis suggests that sequences contained within the downstream repeat of the transcription start site may be used as minor initiation sites in endothelial cells. Transfection studies are underway to evaluate the role of sequences within this promoter region in gene regulatory activity. Comparative restriction analyses of cloned and chromosomal DNA segments strongly suggests that no major alterations ocurred during cloning and that there is only one complete copy of the vWf gene in the human haploid genome. Similar analyses of DNA from vWf-expressing endothelial cells and non-expressing white blood cells suggests that no major rearrangements are associated with vWf gene expression. Finally, cross hybridization patterns among seven mammalian species suggests a strong conservation of genomic sequences encoding the plasma portion of vWf, but a lower degree of conservation of sequences encoding the N terminal region of provWf.


2010 ◽  
Vol 192 (13) ◽  
pp. 3311-3320 ◽  
Author(s):  
Justin L. Ungerer ◽  
Brenda S. Pratte ◽  
Teresa Thiel

ABSTRACT Little is known about the regulation of nitrogenase genes in cyanobacteria. Transcription of the nifH1 and vnfH genes, encoding dinitrogenase reductases for the heterocyst-specific Mo-nitrogenase and the alternative V-nitrogenase, respectively, was studied by using a lacZ reporter. Despite evidence for a transcription start site just upstream of nifH1 and vnfH, promoter fragments that included these start sites did not drive the transcription of lacZ and, for nifH1, did not drive the expression of nifHDK1. Further analysis using larger regions upstream of nifH1 indicated that a promoter within nifU1 and a promoter upstream of nifB1 both contributed to expression of nifHDK1, with the nifB1 promoter contributing to most of the expression. Similarly, while the region upstream of vnfH, containing the putative transcription start site, did not drive expression of lacZ, the region that included the promoter for the upstream gene, ava4055, did. Characterization of the previously reported nifH1 and vnfH transcriptional start sites by 5′RACE (5′ rapid amplification of cDNA ends) revealed that these 5′ ends resulted from processing of larger transcripts rather than by de novo transcription initiation. The 5′ positions of both the vnfH and nifH1 transcripts lie at the base of a stem-loop structure that may serve to stabilize the nifHDK1 and vnfH specific transcripts compared to the transcripts for other genes in the operons providing the proper stoichiometry for the Nif proteins for nitrogenase synthesis.


Sign in / Sign up

Export Citation Format

Share Document