scholarly journals Chorioallantoic Fusion Defects and Embryonic Lethality Resulting from Disruption of Zfp36L1, a Gene Encoding a CCCH Tandem Zinc Finger Protein of the Tristetraprolin Family

2004 ◽  
Vol 24 (14) ◽  
pp. 6445-6455 ◽  
Author(s):  
Deborah J. Stumpo ◽  
Noah A. Byrd ◽  
Ruth S. Phillips ◽  
Sanjukta Ghosh ◽  
Robert R. Maronpot ◽  
...  

ABSTRACT The mouse gene Zfp36L1 encodes zinc finger protein 36-like 1 (Zfp36L1), a member of the tristetraprolin (TTP) family of tandem CCCH finger proteins. TTP can bind to AU-rich elements within the 3′-untranslated regions of the mRNAs encoding tumor necrosis factor (TNF) and granulocyte-macrophage colony-stimulating factor (GM-CSF), leading to accelerated mRNA degradation. TTP knockout mice exhibit an inflammatory phenotype that is largely due to increased TNF secretion. Zfp36L1 has activities similar to those of TTP in cellular RNA destabilization assays and in cell-free RNA binding and deadenylation assays, suggesting that it may play roles similar to those of TTP in mammalian physiology. To address this question we disrupted Zfp36L1 in mice. All knockout embryos died in utero, most by approximately embryonic day 11 (E11). Failure of chorioallantoic fusion occurred in about two-thirds of cases. Even when fusion occurred, by E10.5 the affected placentas exhibited decreased cell division and relative atrophy of the trophoblast layers. Although knockout embryos exhibited neural tube abnormalities and increased apoptosis within the neural tube and also generalized runting, these and other findings may have been due to deficient placental function. Embryonic expression of Zfp36L1 at E8.0 was greatest in the allantois, consistent with a potential role in chorioallantoic fusion. Fibroblasts derived from knockout embryos had apparently normal levels of fully polyadenylated compared to deadenylated GM-CSF mRNA and normal rates of turnover of this mRNA species, both sensitive markers of TTP deficiency in cells. We postulate that lack of Zfp36L1 expression during mid-gestation results in the abnormal stabilization of one or more mRNAs whose encoded proteins lead directly or indirectly to abnormal placentation and fetal death.

Biochemistry ◽  
2021 ◽  
Author(s):  
Jordan D. Pritts ◽  
Abdulafeez A. Oluyadi ◽  
Weiliang Huang ◽  
Geoffrey D. Shimberg ◽  
Maureen A. Kane ◽  
...  

1996 ◽  
Vol 72 (4) ◽  
pp. 297-298 ◽  
Author(s):  
K. Kas ◽  
I. Wlodarska ◽  
E. Meyen ◽  
H. Van den Berghe ◽  
W.J.M. Van deVen

2021 ◽  
Author(s):  
Han Chiu ◽  
Hsin-Ping Chiu ◽  
Han-Pang Yu ◽  
Li-Hsiung Lin ◽  
Zih-Ping Chen ◽  
...  

Zinc-finger protein 36, CCCH type-like 1 (ZFP36L1), containing tandem CCCH-type zinc-finger motifs with an RNA-binding property, plays an important role in cellular RNA metabolism mainly via RNA decay pathways. Recently, we demonstrated that human ZFP36L1 has potent antiviral activity against influenza A virus infection. However, its role in the host defense response against flaviviruses has not been addressed. Here, we demonstrate that ZFP36L1 functions as a host innate defender against flaviviruses, including Japanese encephalitis virus (JEV) and dengue virus (DENV). Overexpression of ZFP36L1 reduced JEV and DENV infection, and ZFP36L1 knockdown enhanced viral replication. ZFP36L1 destabilized the JEV genome by targeting and degrading viral RNA mediated by both 5′-3′ XRN1 and 3′-5′ RNA-exosome RNA decay pathways. Mutation in both zinc-finger motifs of ZFP36L1 disrupted RNA-binding and antiviral activity. Furthermore, the viral RNA sequences specifically recognized by ZFP36L1 were mapped to the 3'-untranslated region of the JEV genome with the AU-rich element (AUUUA) motif. We extend the function of ZFP36L1 to host antiviral defense by directly binding and destabilizing the viral genome via recruiting cellular mRNA decay machineries. Importance Cellular RNA-binding proteins are among the first lines of defense against various viruses, particularly RNA viruses. ZFP36L1 belongs to the CCCH-type zinc-finger protein family and has RNA-binding activity; it has been reported to directly bind to the AU-rich elements (AREs) of a subset of cellular mRNAs and then lead to mRNA decay by recruiting mRNA degrading enzymes. However, the antiviral potential of ZFP36L1 against flaviviruses has not yet been fully demonstrated. Here, we reveal the antiviral potential of human ZFP36L1 against Japanese encephalitis virus (JEV) and dengue virus (DENV). ZFP36L1 specifically targeted the ARE motif within viral RNA and triggered the degradation of viral RNA transcripts via cellular degrading enzymes, 5′-3′ XRN1 and 3′-5′ RNA exosome. These findings provide mechanistic insights into how human ZFP36L1 serves as a host antiviral factor to restrict flavivirus replication.


2012 ◽  
Vol 56 (4) ◽  
pp. 641-647 ◽  
Author(s):  
M. Zahur ◽  
A. Maqbool ◽  
M. Irfan ◽  
A. Jamal ◽  
N. Shahid ◽  
...  

2000 ◽  
Vol 64 (7) ◽  
pp. 1402-1409 ◽  
Author(s):  
Akiko NISHII ◽  
Miho TAKEMURA ◽  
Hidetomo FUJITA ◽  
Masahito SHIKATA ◽  
Akiho YOKOTA ◽  
...  

1995 ◽  
Vol 270 (42) ◽  
pp. 25266-25272 ◽  
Author(s):  
Wi S. Lai ◽  
Michael J. Thompson ◽  
Gregory A. Taylor ◽  
Yi Liu ◽  
Perry J. Blackshear

Sign in / Sign up

Export Citation Format

Share Document