scholarly journals Nuclear Reorganization of Mammalian DNA Synthesis Prior to Cell Cycle Exit

2004 ◽  
Vol 24 (2) ◽  
pp. 595-607 ◽  
Author(s):  
David A. Barbie ◽  
Brian A. Kudlow ◽  
Richard Frock ◽  
Jiyong Zhao ◽  
Brett R. Johnson ◽  
...  

ABSTRACT In primary mammalian cells, DNA replication initiates in a small number of perinucleolar, lamin A/C-associated foci. During S-phase progression in proliferating cells, replication foci distribute to hundreds of sites throughout the nucleus. In contrast, we find that the limited perinucleolar replication sites persist throughout S phase as cells prepare to exit the cell cycle in response to contact inhibition, serum starvation, or replicative senescence. Proteins known to be involved in DNA synthesis, such as PCNA and DNA polymerase δ, are concentrated in perinucleolar foci throughout S phase under these conditions. Moreover, chromosomal loci are redirected toward the nucleolus and overlap with the perinucleolar replication foci in cells poised to undergo cell cycle exit. These same loci remain in the periphery of the nucleus during replication under highly proliferative conditions. These results suggest that mammalian cells undergo a large-scale reorganization of chromatin during the rounds of DNA replication that precede cell cycle exit.

2000 ◽  
Vol 20 (20) ◽  
pp. 7613-7623 ◽  
Author(s):  
Claus Storgaard Sørensen ◽  
Claudia Lukas ◽  
Edgar R. Kramer ◽  
Jan-Michael Peters ◽  
Jiri Bartek ◽  
...  

ABSTRACT Ubiquitin-proteasome-mediated destruction of rate-limiting proteins is required for timely progression through the main cell cycle transitions. The anaphase-promoting complex (APC), periodically activated by the Cdh1 subunit, represents one of the major cellular ubiquitin ligases which, in Saccharomyces cerevisiae andDrosophila spp., triggers exit from mitosis and during G1 prevents unscheduled DNA replication. In this study we investigated the importance of periodic oscillation of the APC-Cdh1 activity for the cell cycle progression in human cells. We show that conditional interference with the APC-Cdh1 dissociation at the G1/S transition resulted in an inability to accumulate a surprisingly broad range of critical mitotic regulators including cyclin B1, cyclin A, Plk1, Pds1, mitosin (CENP-F), Aim1, and Cdc20. Unexpectedly, although constitutively assembled APC-Cdh1 also delayed G1/S transition and lowered the rate of DNA synthesis during S phase, some of the activities essential for DNA replication became markedly amplified, mainly due to a progressive increase of E2F-dependent cyclin E transcription and a rapid turnover of the p27Kip1 cyclin-dependent kinase inhibitor. Consequently, failure to inactivate APC-Cdh1 beyond the G1/S transition not only inhibited productive cell division but also supported slow but uninterrupted DNA replication, precluding S-phase exit and causing massive overreplication of the genome. Our data suggest that timely oscillation of the APC-Cdh1 ubiquitin ligase activity represents an essential step in coordinating DNA replication with cell division and that failure of mechanisms regulating association of APC with the Cdh1 activating subunit can undermine genomic stability in mammalian cells.


1994 ◽  
Vol 107 (1) ◽  
pp. 253-265 ◽  
Author(s):  
I.T. Todorov ◽  
R. Pepperkok ◽  
R.N. Philipova ◽  
S.E. Kearsey ◽  
W. Ansorge ◽  
...  

Molecular cloning and characterisation of a human nuclear protein designated BM28 is reported. On the amino acid level this 892 amino acid protein, migrating on SDS-gels as a 125 kDa polypeptide, shares areas of significant similarity with a recently defined family of early S phase proteins. The members of this family, the Saccharomyces cerevisiae Mcm2p, Mcm3p, Cdc46p/Mcm5p, the Schizosaccharomyces pombe Cdc21p and the mouse protein P1 are considered to be involved in the onset of DNA replication. The highest similarity was found with Mcm2p (42% identity over the whole length and higher than 75% over a conservative region of 215 amino acid residues), suggesting that BM28 could represent the human homologue of the S. cerevisiae MCM2. Using antibodies raised against the recombinant BM28 the corresponding antigen was found to be localised in the nuclei of various mammalian cells. Microinjection of anti-BM28 antibody into synchronised mouse NIH3T3 or human HeLa cells presents evidence for the involvement of the protein in cell cycle progression. When injected in G1 phase the anti-BM28 antibody inhibits the onset of subsequent DNA synthesis as tested by the incorporation of bromodeoxyuridine. Microinjection during the S phase had no effect on DNA synthesis, but inhibits cell division. The data suggest that the nuclear protein BM28 is required for two events of the cell cycle, for the onset of DNA replication and for cell division.


2008 ◽  
Vol 82 (18) ◽  
pp. 9056-9064 ◽  
Author(s):  
Sally Roberts ◽  
Sarah R. Kingsbury ◽  
Kai Stoeber ◽  
Gillian L. Knight ◽  
Phillip H. Gallimore ◽  
...  

ABSTRACT Productive infections by human papillomaviruses (HPVs) are restricted to nondividing, differentiated keratinocytes. HPV early proteins E6 and E7 deregulate cell cycle progression and activate the host cell DNA replication machinery in these cells, changes essential for virus synthesis. Productive virus replication is accompanied by abundant expression of the HPV E4 protein. Expression of HPV1 E4 in cells is known to activate cell cycle checkpoints, inhibiting G2-to-M transition of the cell cycle and also suppressing entry of cells into S phase. We report here that the HPV1 E4 protein, in the presence of a soluble form of the replication-licensing factor (RLF) Cdc6, inhibits initiation of cellular DNA replication in a mammalian cell-free DNA replication system. Chromatin-binding studies show that E4 blocks replication initiation in vitro by preventing loading of the RLFs Mcm2 and Mcm7 onto chromatin. HPV1 E4-mediated replication inhibition in vitro and suppression of entry of HPV1 E4-expressing cells into S phase are both abrogated upon alanine replacement of arginine 45 in the full-length E4 protein (E1^E4), implying that these two HPV1 E4 functions are linked. We hypothesize that HPV1 E4 inhibits competing host cell DNA synthesis in replication-activated suprabasal keratinocytes by suppressing licensing of cellular replication origins, thus modifying the phenotype of the infected cell in favor of viral genome amplification.


1998 ◽  
Vol 140 (5) ◽  
pp. 975-989 ◽  
Author(s):  
Gang Li ◽  
Gail Sudlow ◽  
Andrew S. Belmont

Recently we described a new method for in situ localization of specific DNA sequences, based on lac operator/repressor recognition (Robinett, C.C., A. Straight, G. Li, C. Willhelm, G. Sudlow, A. Murray, and A.S. Belmont. 1996. J. Cell Biol. 135:1685–1700). We have applied this methodology to visualize the cell cycle dynamics of an ∼90 Mbp, late-replicating, heterochromatic homogeneously staining region (HSR) in CHO cells, combining immunostaining with direct in vivo observations. Between anaphase and early G1, the HSR extends approximately twofold to a linear, ∼0.3-μm-diam chromatid, and then recondenses to a compact mass adjacent to the nuclear envelope. No further changes in HSR conformation or position are seen through mid-S phase. However, HSR DNA replication is preceded by a decondensation and movement of the HSR into the nuclear interior 4–6 h into S phase. During DNA replication the HSR resolves into linear chromatids and then recondenses into a compact mass; this is followed by a third extension of the HSR during G2/ prophase. Surprisingly, compaction of the HSR is extremely high at all stages of interphase. Preliminary ultrastructural analysis of the HSR suggests at least three levels of large-scale chromatin organization above the 30-nm fiber.


Author(s):  
Cory Haluska ◽  
Fengzhi Jin ◽  
Yanchang Wang

DNA replication stress activates the S-phase checkpoint that arrests the cell cycle, but it is poorly understood how cells recover from this arrest. Cyclin-dependent kinase (CDK) and Protein Phosphatase 2A (PP2A) are key cell cycle regulators, and Cdc55 is a regulatory subunit of PP2A in budding yeast. We found that yeast cells lacking functional PP2ACdc55 showed slow growth in the presence of hydroxyurea (HU), a DNA synthesis inhibitor, without obvious viability loss. Moreover, PP2A mutants exhibited delayed anaphase entry and sustained levels of anaphase inhibitor Pds1 after HU treatment. A DNA damage checkpoint Chk1 phosphorylates and stabilizes Pds1. We showed that chk1Δ and mutation of the Chk1 phosphorylation sites in Pds1 largely restored efficient anaphase entry in PP2A mutants after HU treatment. In addition, deletion of SWE1 that encodes the inhibitory kinase for CDK or mutation of the Swe1 phosphorylation site in CDK ( cdc28F19) also suppressed the anaphase entry delay in PP2A mutants after HU treatment. Our genetic data suggest that Swe1/CDK acts upstream of Pds1. Surprisingly, cdc55Δ showed significant suppression to the viability loss of S-phase checkpoint mutants during DNA synthesis block. Together, our results uncover a PP2A-Swe1-CDK-Chk1-Pds1 axis that promotes recovery from DNA replication stress.


1987 ◽  
Vol 7 (8) ◽  
pp. 2925-2932
Author(s):  
D L Coppock ◽  
A B Pardee

To investigate the mechanism which controls the onset of DNA synthesis, we examined the regulation of thymidine kinase (TK) and its mRNA in the cell cycle. TK activity provides a useful marker for the onset of the S phase in mammalian cells. The present analysis of regulation of TK mRNA in BALB/c 3T3 cells showed that (i) the increase in TK activity depended on the availability of TK mRNA, (ii) the level of TK mRNA between G0 and S increased more than 20-fold, (iii) the rate of run-on TK transcription increased at most 2- to 4-fold between the G0 and S phases, (iv) the half-life of TK mRNA was greater than 8 to 12 h in the S and M phases and decreased as cells entered quiescence, (v) the TK mRNA increase was fully blocked by inhibition of protein synthesis by only 60%, (vi) this inhibition was completely effective for up to about 10 h following serum addition and progressively much less effective when the drugs were added later. These results suggest that the appearance of TK mRNA at the beginning of the S phase in serum-stimulated 3T3 cells is controlled not only by the rate of gene transcription but importantly also by the decreased rate of mRNA degradation. Similar mechanisms may be involved in regulation of the onset of DNA synthesis and the increase in TK mRNA since both are controlled in a manner consistent with a requirement for a labile protein.


1987 ◽  
Vol 7 (8) ◽  
pp. 2925-2932 ◽  
Author(s):  
D L Coppock ◽  
A B Pardee

To investigate the mechanism which controls the onset of DNA synthesis, we examined the regulation of thymidine kinase (TK) and its mRNA in the cell cycle. TK activity provides a useful marker for the onset of the S phase in mammalian cells. The present analysis of regulation of TK mRNA in BALB/c 3T3 cells showed that (i) the increase in TK activity depended on the availability of TK mRNA, (ii) the level of TK mRNA between G0 and S increased more than 20-fold, (iii) the rate of run-on TK transcription increased at most 2- to 4-fold between the G0 and S phases, (iv) the half-life of TK mRNA was greater than 8 to 12 h in the S and M phases and decreased as cells entered quiescence, (v) the TK mRNA increase was fully blocked by inhibition of protein synthesis by only 60%, (vi) this inhibition was completely effective for up to about 10 h following serum addition and progressively much less effective when the drugs were added later. These results suggest that the appearance of TK mRNA at the beginning of the S phase in serum-stimulated 3T3 cells is controlled not only by the rate of gene transcription but importantly also by the decreased rate of mRNA degradation. Similar mechanisms may be involved in regulation of the onset of DNA synthesis and the increase in TK mRNA since both are controlled in a manner consistent with a requirement for a labile protein.


1999 ◽  
Vol 19 (7) ◽  
pp. 5083-5095 ◽  
Author(s):  
Hiroyuki Kumagai ◽  
Noriko Sato ◽  
Masayuki Yamada ◽  
Daniel Mahony ◽  
Wolfgang Seghezzi ◽  
...  

ABSTRACT A novel human protein, ASK (activator of S phase kinase), was identified on the basis of its ability to bind to human Cdc7-related kinase (huCdc7). ASK forms an active kinase complex with huCdc7 that is capable of phosphorylating MCM2 protein. ASK appears to be the major activator of huCdc7, since immunodepletion of ASK protein from the extract is accompanied by the loss of huCdc7-dependent kinase activity. Expression of ASK is regulated by growth factor stimulation, and levels oscillate through the cell cycle, reaching a peak during S phase. Concomitantly, the huCdc7-dependent kinase activity significantly increases when cells are in S phase. Furthermore, we have demonstrated that ASK serves an essential function for entry into S phase by showing that microinjection of ASK-specific antibodies into mammalian cells inhibited DNA replication. Our data show that ASK is a novel cyclin-like regulatory subunit of the huCdc7 kinase complex and that it plays a pivotal role in G1/S transition in mammalian cells.


1998 ◽  
Vol 18 (11) ◽  
pp. 6679-6697 ◽  
Author(s):  
Guus Hateboer ◽  
Albrecht Wobst ◽  
Birgit Otzen Petersen ◽  
Laurent Le Cam ◽  
Elena Vigo ◽  
...  

ABSTRACT The E2F transcription factors are essential regulators of cell growth in multicellular organisms, controlling the expression of a number of genes whose products are involved in DNA replication and cell proliferation. In Saccharomyces cerevisiae, the MBF and SBF transcription complexes have functions similar to those of E2F proteins in higher eukaryotes, by regulating the timed expression of genes implicated in cell cycle progression and DNA synthesis. TheCDC6 gene is a target for MBF and SBF-regulated transcription. S. cerevisiae Cdc6p induces the formation of the prereplication complex and is essential for initiation of DNA replication. Interestingly, the Cdc6p homolog inSchizosaccharomyces pombe, Cdc18p, is regulated by DSC1, the S. pombe homolog of MBF. By cloning the promoter for the human homolog of Cdc6p and Cdc18p, we demonstrate here that the cell cycle-regulated transcription of this gene is dependent on E2F. In vivo footprinting data demonstrate that the identified E2F sites are occupied in resting cells and in exponentially growing cells, suggesting that E2F is responsible for downregulating the promoter in early phases of the cell cycle and the subsequent upregulation when cells enter S phase. Our data also demonstrate that the human CDC6 protein (hCDC6) is essential and limiting for DNA synthesis, since microinjection of an anti-CDC6 rabbit antiserum blocks DNA synthesis and CDC6 cooperates with cyclin E to induce entry into S phase in cotransfection experiments. Furthermore, E2F is sufficient to induce expression of the endogenous CDC6 gene even in the absence of de novo protein synthesis. In conclusion, our results provide a direct link between regulated progression through G1controlled by the pRB pathway and the expression of proteins essential for the initiation of DNA replication.


1987 ◽  
Vol 7 (5) ◽  
pp. 1933-1937 ◽  
Author(s):  
J J Carrino ◽  
V Kueng ◽  
R Braun ◽  
T G Laffler

During the S phase of the cell cycle, histone gene expression and DNA replication are tightly coupled. In mitotically synchronous plasmodia of the myxomycete Physarum polycephalum, which has no G1 phase, histone mRNA synthesis begins in mid-G2 phase. Although histone gene transcription is activated in the absence of significant DNA synthesis, our data demonstrate that histone gene expression became tightly coupled to DNA replication once the S phase began. There was a transition from the replication-independent phase to the replication-dependent phase of histone gene expression. During the first phase, histone mRNA synthesis appears to be under direct cell cycle control; it was not coupled to DNA replication. This allowed a pool of histone mRNA to accumulate in late G2 phase, in anticipation of future demand. The second phase began at the end of mitosis, when the S phase began, and expression became homeostatically coupled to DNA replication. This homeostatic control required continuing protein synthesis, since cycloheximide uncoupled transcription from DNA synthesis. Nuclear run-on assays suggest that in P. polycephalum this coupling occurs at the level of transcription. While histone gene transcription appears to be directly switched on in mid-G2 phase and off at the end of the S phase by cell cycle regulators, only during the S phase was the level of transcription balanced with the rate of DNA synthesis.


Sign in / Sign up

Export Citation Format

Share Document