scholarly journals Insertion of the βGeo Promoter Trap into the Fem1c Gene of ROSA3 Mice

2004 ◽  
Vol 24 (9) ◽  
pp. 3794-3803 ◽  
Author(s):  
Cassandra L. Schlamp ◽  
Andrew T. Thliveris ◽  
Yan Li ◽  
Louis P. Kohl ◽  
Claudia Knop ◽  
...  

ABSTRACT ROSA3 mice were developed by retroviral insertion of the βGeo gene trap vector. Adult ROSA3 mice exhibit widespread expression of the trap gene in epithelial cells found in most organs. In the central nervous system the highest expression of βGeo is found in CA1 pyramidal cells of the hippocampus, Purkinje cells of the cerebellum, and ganglion cells of the retina. Characterization of the genomic insertion site for βGeo in ROSA3 mice shows that the trap vector is located in the first intron of Fem1c, a gene homologous to the sex-determining gene fem-1 of Caenorhabditis elegans. Transcription of the Rosa3 allele (R3) yields a spliced message that includes the first exon of Fem1c and the βGeo coding region. Although normal processing of the Fem1c transcript is disrupted in homozygous Rosa3 (Fem1cR3/R3 ) mice, some tissues show low levels of a partially processed transcript containing exons 2 and 3. Since the entire coding region of Fem1c is located in these two exons, Fem1cR3/R3 mice may still be able to express a putative FEM1C protein. To this extent, Fem1cR3/R3 mice show no adverse effects in their sexual development or fertility or in the attenuation of neuronal cell death, another function that has been attributed to both fem-1 and a second mouse homolog, Fem1b. Examination of βGeo expression in ganglion cells after exposure to damaging stimuli indicates that protein levels are rapidly depleted prior to cell death, making the βGeo reporter gene a potentially useful marker to study early molecular events in damaged neurons.

2007 ◽  
Vol 28 (1) ◽  
pp. 99-110 ◽  
Author(s):  
Willard J Costain ◽  
Ingrid Rasquinha ◽  
Jagdeep K Sandhu ◽  
Peter Rippstein ◽  
Bogdan Zurakowski ◽  
...  

Synaptic pathology is observed during hypoxic events in the central nervous system in the form of altered dendrite structure and conductance changes. These alterations are rapidly reversible, on the return of normoxia, but are thought to initiate subsequent neuronal cell death. To characterize the effects of hypoxia on regulators of synaptic stability, we examined the temporal expression of cell adhesion molecules (CAMs) in synaptosomes after transient middle cerebral artery occlusion (MCAO) in mice. We focused on events preceding the onset of ischemic neuronal cell death (< 48 h). Synaptosome preparations were enriched in synaptically localized proteins and were free of endoplasmic reticulum and nuclear contamination. Electron microscopy showed that the synaptosome preparation was enriched in spheres (≈650 nm in diameter) containing secretory vesicles and postsynaptic densities. Forebrain mRNA levels of synaptically located CAMs was unaffected at 3 h after MCAO. This is contrasted by the observation of consistent downregulation of synaptic CAMs at 20 h after MCAO. Examination of synaptosomal CAM protein content indicated that certain adhesion molecules were decreased as early as 3 h after MCAO. For comparison, synaptosomal Agrn protein levels were unaffected by cerebral ischemia. Furthermore, a marked increase in the levels of p-Ctnnb1 in ischemic synaptosomes was observed. p-Ctnnb1 was detected in hippocampal fiber tracts and in cornu ammonis 1 neuronal nuclei. These results indicate that ischemia induces a dysregulation of a subset of synaptic proteins that are important regulators of synaptic plasticity before the onset of ischemic neuronal cell death.


2021 ◽  
Author(s):  
Jeong-Min Hong ◽  
Ji-Hong Moon ◽  
Young Min Oh ◽  
Sang-Youel Park

Abstract Background: Prion diseases are a group of unvaryingly fatal neurodegenerative disorders characterized by neuronal cell death. Calcineurin and autophagy mediate prion-induced neurodegeneration, suggesting that inhibition of calcineurin and autophagy could be a target for therapy. Baicalein has been reported to exert neuroprotective effects against calcium-dependent neuronal cell death. Results: In the present study, we investigated whether baicalein attenuates prion peptide-mediated neurotoxicity and reduces calcineurin. We found that baicalein treatment inhibits prion protein-induced apoptosis. Baicalein inhibited calcium up-regulation and protected the cells against prion peptide‑induced neuron cell death by calcineurin inactivation. Furthermore, baicalein increased p62 protein levels and decrease LC3-II protein levels indicating autophagic flux inhibition and baicalein inhibited prion protein-induced neurotoxicity through autophagy flux inhibition. Conclusions: Taken together, this study demonstrated that baicalein attenuated prion peptide-induced neurotoxicity via calcineurin inactivation and autophagic flux reduction, and also suggest that baicalein may be an effective therapeutic drug against neurodegenerative diseases, including prion diseases.


2020 ◽  
Author(s):  
Jeong-Min Hong ◽  
Ji-Hong Moon ◽  
Sang-Youel Park

Abstract Background: Prion diseases are a group of unvaryingly fatal neurodegenerative disorders characterized by neuronal cell death. Calcineurin and autophagy mediate prion-induced neurodegeneration, suggesting that inhibition of calcineurin and autophagy could be a target for therapy. Baicalein has been reported to exert neuroprotective effects against calcium-dependent neuronal cell death. Results: In the present study, we investigated whether baicalein attenuates prion peptide-mediated neurotoxicity and reduces calcineurin. We found that baicalein treatment inhibits prion protein-induced apoptosis. Baicalein inhibited calcium up-regulation and protected the cells against prion peptide‑induced neuron cell death by calcineurin inactivation. Furthermore, baicalein increased p62 protein levels and decrease LC3-II protein levels indicating autophagic flux inhibition and baicalein inhibited prion protein-induced neurotoxicity through autophagy flux inhibition. Conclusions: Taken together, this study demonstrated that baicalein attenuated prion peptide-induced neurotoxicity via calcineurin inactivation and autophagic flux reduction, and also suggest that baicalein may be an effective therapeutic drug against neurodegenerative diseases, including prion diseases.


2020 ◽  
Author(s):  
Jeong-Min Hong ◽  
Ji-Hong Moon ◽  
Sang-Youel Park

Abstract Background: Prion diseases are a group of unvaryingly fatal neurodegenerative disorders characterized by neuronal cell death. Calcineurin and autophagy mediate prion-induced neurodegeneration, suggesting that inhibition of calcineurin and autophagy could be a target for therapy. Baicalein has been reported to exert neuroprotective effects against calcium-dependent neuronal cell death. Results: In the present study, we investigated whether baicalein attenuates prion peptide-mediated neurotoxicity and reduces calcineurin. We found that baicalein treatment inhibits prion protein-induced apoptosis. Baicalein inhibited calcium up-regulation and protected the cells against prion peptide‑induced neuron cell death by calcineurin inactivation. Furthermore, baicalein increased p62 protein levels and decrease LC3-II protein levels indicating autophagic flux inhibition and baicalein inhibited prion protein-induced neurotoxicity through autophagy flux inhibition. Conclusions: Taken together, this study demonstrated that baicalein attenuated prion peptide-induced neurotoxicity via calcineurin inactivation and autophagic flux reduction, and also suggest that baicalein may be an effective therapeutic drug against neurodegenerative diseases, including prion diseases.


2020 ◽  
Author(s):  
Jeong-Min Hong ◽  
Ji-Hong Moon ◽  
Sang-Youel Park

Abstract Background: Prion diseases are a group of fatal neurodegenerative disorders characterized by neuronal cell death. Calcineurin and autophagy mediate prion-induced neurodegeneration, suggesting that inhibition of calcineurin and autophagy could be a target for therapy. Baicalein has been reported to exert neuroprotective effects against calcium-dependent neuronal cell death. Results: In this study, we investigated the effects of baicalein on the development of prion diseases. We found that baicalein treatment inhibits prion protein-induced apoptosis. Baicalein inhibited calcium up-regulation and protected the cells against prion peptide‑induced neuron cell death by calcineurin inactivation. Furthermore, baicalein increased p62 protein levels and decrease LC3-II protein levels indicating autophagic flux inhibition and baicalein inhibited prion protein-induced neurotoxicity through autophagy flux inhibition. Conclusions: Taken together, this study demonstrated that baicalein attenuated prion peptide-induced neurotoxicity via calcineurin inactivation and autophagic flux reduction, and also suggest that baicalein may be an effective therapeutic drug against neurodegenerative diseases, including prion diseases.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Yechun Ding ◽  
Yuantong Tian ◽  
Zhaoyi Zeng ◽  
Ping Shuai ◽  
Haiying Lan ◽  
...  

The pollutants rare earth elements (REEs) have posed great threats to human health. To investigate the cytotoxicity of yttrium (Y), a model that rats have free access to water containing YCl3 for 6 months is utilized. The results showed that YCl3 treatment promoted neuronal cell apoptosis by upregulating the proapoptotic factors Bax, caspase-3, Cyto c, and DAPK and by downregulating the antiapoptotic factors Bcl-2 and XIAP at both mRNA and protein levels. Conclusively, YCl3 exhibited cytotoxicity and promoted neuronal cell death by the induction of apoptotic pathways.


2020 ◽  
Author(s):  
Jeong-Min Hong ◽  
Ji-Hong Moon ◽  
Sang-Youel Park

Abstract Background: Prion diseases are a group of unvaryingly fatal neurodegenerative disorders characterized by neuronal cell death. Calcineurin and autophagy mediate prion-induced neurodegeneration, suggesting that inhibition of calcineurin and autophagy could be a target for therapy. Baicalein has been reported to exert neuroprotective effects against calcium-dependent neuronal cell death. Results: In the present study, we investigated whether baicalein attenuates prion peptide-mediated neurotoxicity and reduces calcineurin. We found that baicalein treatment inhibits prion protein-induced apoptosis. Baicalein inhibited calcium up-regulation and protected the cells against prion peptide‑induced neuron cell death by calcineurin inactivation. Furthermore, baicalein increased p62 protein levels and decrease LC3-II protein levels indicating autophagic flux inhibition and baicalein inhibited prion protein-induced neurotoxicity through autophagy flux inhibition. Conclusions: Taken together, this study demonstrated that baicalein attenuated prion peptide-induced neurotoxicity via calcineurin inactivation and autophagic flux reduction, and also suggest that baicalein may be an effective therapeutic drug against neurodegenerative diseases, including prion diseases.


2020 ◽  
Author(s):  
Jacob K. Sterling ◽  
Modupe Adetunji ◽  
Samyuktha Guttha ◽  
Albert Bargoud ◽  
Katherine Uyhazi ◽  
...  

SUMMARYGlaucoma is the leading cause of irreversible blindness worldwide and is characterized by the death of retinal ganglion cells. Reduction of intraocular pressure (IOP) is the only therapeutic mechanism available to slow disease progression. However, glaucoma can continue to progress despite normalization of IOP. New treatments are needed to reduce vision loss and improve outcomes for patients who have exhausted existing therapeutic avenues. Recent studies have implicated neuroinflammation in the pathogenesis of neurodegenerative diseases of both the retina and the brain, including glaucoma and Parkinson’s disease. Pro-inflammatory A1 astrocytes contribute to neuronal cell death in multiple disease processes and have been targeted therapeutically in mouse models of Parkinson’s disease. Microglial release of pro-inflammatory cytokines C1q, IL-1α, and TNF-α is sufficient to drive the formation of A1 astrocytes. The role of A1 astrocytes in glaucoma pathogenesis has not been explored. Using a mouse model of glaucoma, we demonstrated that IOP elevation was sufficient to trigger production of C1q, IL-1α, and TNF-α by infiltrating macrophages followed by resident microglia. These three cytokines drove the formation of A1 astrocytes in the retina. Furthermore, cytokine production and A1 astrocyte transformation persisted following IOP normalization. Ablation of this pathway, by either genetic deletions of C1q, IL-1α, and TNF-α, or treatment with glucagon-like peptide-1 receptor agonist NLY01, reduced A1 astrocyte transformation and RGC death. Together, these results highlight a new neuroinflammatory mechanism behind glaucomatous neurodegeneration that can be therapeutically targeted by NLY01 administration.


2020 ◽  
Author(s):  
Jeong-Min Hong ◽  
Ji-Hong Moon ◽  
Sang-Youel Park

Abstract Prion diseases are a group of fatal neurodegenerative disorders characterized by neuronal cell death. Calcineurin and autophagy mediate prion-induced neurodegeneration, suggesting that inhibition of calcineurin and autophagy could be a target for therapy. Baicalein has been reported to exert neuroprotective effects against calcium-dependent neuronal cell death. In this study, we investigated the effects of baicalein on the development of prion diseases. We found that baicalein treatment inhibits prion protein-induced apoptosis. Baicalein inhibited calcium up-regulation and protected the cells against prion peptide‑induced neuron cell death by calcineurin inactivation. Furthermore, baicalein increased p62 protein levels and decrease LC3-II protein levels indicating autophagic flux inhibition and baicalein inhibited prion protein-induced neurotoxicity through autophagy flux inhibition. Taken together, this study demonstrated that baicalein attenuated prion peptide-induced neurotoxicity via calcineurin inactivation and autophagic flux reduction, and also suggest that baicalein may be an effective therapeutic drug against neurodegenerative diseases, including prion diseases.


Sign in / Sign up

Export Citation Format

Share Document