scholarly journals In Vivo HP1 Targeting Causes Large-Scale Chromatin Condensation and Enhanced Histone Lysine Methylation

2005 ◽  
Vol 25 (11) ◽  
pp. 4552-4564 ◽  
Author(s):  
Pernette J. Verschure ◽  
Ineke van der Kraan ◽  
Wim de Leeuw ◽  
Johan van der Vlag ◽  
Anne E. Carpenter ◽  
...  

ABSTRACT Changes in chromatin structure are a key aspect in the epigenetic regulation of gene expression. We have used a lac operator array system to visualize by light microscopy the effect of heterochromatin protein 1 (HP1) α (HP1α) and HP1β on large-scale chromatin structure in living mammalian cells. The structure of HP1, containing a chromodomain, a chromoshadow domain, and a hinge domain, allows it to bind to a variety of proteins. In vivo targeting of an enhanced green fluorescent protein-tagged HP1-lac repressor fusion to a lac operator-containing, gene-amplified chromosome region causes local condensation of the higher-order chromatin structure, recruitment of the histone methyltransferase SETDB1, and enhanced trimethylation of histone H3 lysine 9. Polycomb group proteins of both the HPC/HPH and the EED/EZH2 complexes, which are involved in the heritable repression of gene activity, are not recruited to the amplified chromosome region by HP1α and HP1β in vivo targeting. HP1α targeting causes the recruitment of endogenous HP1β to the chromatin region and vice versa, indicating a direct interaction between the two HP1 homologous proteins. Our findings indicate that HP1α and HP1β targeting is sufficient to induce heterochromatin formation.

1992 ◽  
Vol 12 (10) ◽  
pp. 4271-4278 ◽  
Author(s):  
D E Syroid ◽  
R I Tapping ◽  
J P Capone

We have exploited the Escherichia coli lac operator/repressor system as a means to regulate the expression of a mammalian tRNA gene in vivo and in vitro. An oligonucleotide containing a lac operator (lacO) site was cloned immediately upstream of a human serine amber suppressor (Su+) tRNA gene. Insertion of a single lac repressor binding site at position -1 or -32 relative to the coding region had no effect on the amount of functional tRNA made in vivo, as measured by suppression of a nonsense mutation in the E. coli chloramphenicol acetyltransferase gene following cotransfection of mammalian cells. Inclusion of a plasmid expressing the lac repressor in the transfections resulted in 75 to 98% inhibition of suppression activity of lac operator-linked tRNA genes but had no effect on expression of the wild-type gene. Inhibition could be quantitatively relieved with the allosteric inducer isopropylthio-beta-D-galactoside (IPTG). Similarly, transcription in vitro of lac operator-linked tRNA genes in HeLa cell extracts was repressed in the presence of lac repressor, and this inhibition was reversible with IPTG. These results demonstrate that the bacterial lac operator/repressor system can be used to reversibly control the expression of mammalian genes that are transcribed by RNA polymerase III.


2007 ◽  
Vol 18 (10) ◽  
pp. 3941-3951 ◽  
Author(s):  
Jihui Qiu ◽  
Ying Huang ◽  
Guoqiang Chen ◽  
Zhu Chen ◽  
David J. Tweardy ◽  
...  

Acute promyelocytic leukemia (APL) is characterized by specific chromosomal translocations, which generate fusion proteins such as promyelocytic leukemia (PML)-retinoic acid receptor (RAR)α and promyelocytic leukemia zinc finger (PLZF)-RARα (X-RARα). In this study, we have applied lac operator array systems to study the effects of X-RARα versus wild-type RARα on large-scale chromatin structure. The targeting of these enhanced cyan fluorescent protein-lac repressor-tagged RARα-containing proteins to the gene-amplification chromosomal region by lac operator repeats led to local chromatin condensation, recruitment of nuclear receptor corepressor, and histone deacetylase complex. The addition of retinoic acid (RA) induced large-scale chromatin decondensation in cells expressing RARα; however, cells expressing X-RARα, especially PML-RARα, demonstrated insensitive response to this effect of all-trans retinoic acid (ATRA). Although we did not reveal differences in RA-dependent colocalization of either silencing mediator for retinoid and thyroid or steroid receptor coactivator (SRC)-1 with RARα versus X-RARα, the hormone-independent association between SRC-1 and X-RARα on the array has been identified. Rather, compared with cells expressing RARα, fluorescence recovery after photobleaching of live transfected cells, demonstrated decreased mobility of SRC-1 on the X-RARα–bound chromatin. Thus, the impaired ability of APL fusion proteins to activate gene transcription in response to ATRA corresponds to their reduced ability to remodel chromatin, which may link to their ability to impair the mobility of key nuclear receptor coregulators.


1999 ◽  
Vol 145 (7) ◽  
pp. 1341-1354 ◽  
Author(s):  
Tudorita Tumbar ◽  
Gail Sudlow ◽  
Andrew S. Belmont

Analysis of the relationship between transcriptional activators and chromatin organization has focused largely on lower levels of chromatin structure. Here we describe striking remodeling of large-scale chromatin structure induced by a strong transcriptional activator. A VP16-lac repressor fusion protein targeted the VP16 acidic activation domain to chromosome regions containing lac operator repeats. Targeting was accompanied by increased transcription, localized histone hyperacetylation, and recruitment of at least three different histone acetyltransferases. Observed effects on large-scale chromatin structure included unfolding of a 90-Mbp heterochromatic chromosome arm into an extended 25–40-μm chromonema fiber, remodeling of this fiber into a novel subnuclear domain, and propagation of large-scale chromatin unfolding over hundreds of kilobase pairs. These changes in large-scale chromatin structure occurred even with inhibition of ongoing transcription by α-amanitin. Our results suggest a functional link between recruitment of the transcriptional machinery and changes in large-scale chromatin structure. Based on the observed long-range propagation of changes in large-scale chromatin structure, we suggest a possible rationale for the observed clustering of housekeeping genes within Mbp-sized chromosome bands.


2001 ◽  
Vol 155 (6) ◽  
pp. 911-922 ◽  
Author(s):  
Qinong Ye ◽  
Yan-Fen Hu ◽  
Hongjun Zhong ◽  
Anne C. Nye ◽  
Andrew S. Belmont ◽  
...  

The breast cancer susceptibility gene BRCA1 encodes a protein that has been implicated in multiple nuclear functions, including transcription and DNA repair. The multifunctional nature of BRCA1 has raised the possibility that the polypeptide may regulate various nuclear processes via a common underlying mechanism such as chromatin remodeling. However, to date, no direct evidence exists in mammalian cells for BRCA1-mediated changes in either local or large-scale chromatin structure. Here we show that targeting BRCA1 to an amplified, lac operator–containing chromosome region in the mammalian genome results in large-scale chromatin decondensation. This unfolding activity is independently conferred by three subdomains within the transactivation domain of BRCA1, namely activation domain 1, and the two BRCA1 COOH terminus (BRCT) repeats. In addition, we demonstrate a similar chromatin unfolding activity associated with the transactivation domains of E2F1 and tumor suppressor p53. However, unlike E2F1 and p53, BRCT-mediated chromatin unfolding is not accompanied by histone hyperacetylation. Cancer-predisposing mutations of BRCA1 display an allele-specific effect on chromatin unfolding: 5′ mutations that result in gross truncation of the protein abolish the chromatin unfolding activity, whereas those in the 3′ region of the gene markedly enhance this activity. A novel cofactor of BRCA1 (COBRA1) is recruited to the chromosome site by the first BRCT repeat of BRCA1, and is itself sufficient to induce chromatin unfolding. BRCA1 mutations that enhance chromatin unfolding also increase its affinity for, and recruitment of, COBRA1. These results indicate that reorganization of higher levels of chromatin structure is an important regulated step in BRCA1-mediated nuclear functions.


1992 ◽  
Vol 12 (10) ◽  
pp. 4271-4278
Author(s):  
D E Syroid ◽  
R I Tapping ◽  
J P Capone

We have exploited the Escherichia coli lac operator/repressor system as a means to regulate the expression of a mammalian tRNA gene in vivo and in vitro. An oligonucleotide containing a lac operator (lacO) site was cloned immediately upstream of a human serine amber suppressor (Su+) tRNA gene. Insertion of a single lac repressor binding site at position -1 or -32 relative to the coding region had no effect on the amount of functional tRNA made in vivo, as measured by suppression of a nonsense mutation in the E. coli chloramphenicol acetyltransferase gene following cotransfection of mammalian cells. Inclusion of a plasmid expressing the lac repressor in the transfections resulted in 75 to 98% inhibition of suppression activity of lac operator-linked tRNA genes but had no effect on expression of the wild-type gene. Inhibition could be quantitatively relieved with the allosteric inducer isopropylthio-beta-D-galactoside (IPTG). Similarly, transcription in vitro of lac operator-linked tRNA genes in HeLa cell extracts was repressed in the presence of lac repressor, and this inhibition was reversible with IPTG. These results demonstrate that the bacterial lac operator/repressor system can be used to reversibly control the expression of mammalian genes that are transcribed by RNA polymerase III.


1996 ◽  
Vol 135 (6) ◽  
pp. 1685-1700 ◽  
Author(s):  
C C Robinett ◽  
A Straight ◽  
G Li ◽  
C Willhelm ◽  
G Sudlow ◽  
...  

We report a new method for in situ localization of DNA sequences that allows excellent preservation of nuclear and chromosomal ultrastructure and direct, in vivo observations. 256 direct repeats of the lac operator were added to vector constructs used for transfection and served as a tag for labeling by lac repressor. This system was first characterized by visualization of chromosome homogeneously staining regions (HSRs) produced by gene amplification using a dihydrofolate reductase (DHFR) expression vector with methotrexate selection. Using electron microscopy, most HSRs showed approximately 100-nm fibers, as described previously for the bulk, large-scale chromatin organization in these cells, and by light microscopy, distinct, large-scale chromatin fibers could be traced in vivo up to 5 microns in length. Subsequent experiments demonstrated the potential for more general applications of this labeling technology. Single and multiple copies of the integrated vector could be detected in living CHO cells before gene amplification, and detection of a single 256 lac operator repeat and its stability during mitosis was demonstrated by its targeted insertion into budding yeast cells by homologous recombination. In both CHO cells and yeast, use of the green fluorescent protein-lac repressor protein allowed extended, in vivo observations of the operator-tagged chromosomal DNA. Future applications of this technology should facilitate structural, functional, and genetic analysis of chromatin organization, chromosome dynamics, and nuclear architecture.


1991 ◽  
Vol 219 (4) ◽  
pp. 623-634 ◽  
Author(s):  
Anastasia M. Khoury ◽  
Harry S. Nick ◽  
Ponzy Lu

1996 ◽  
Vol 74 (5) ◽  
pp. 623-632 ◽  
Author(s):  
Margarida O. Krause

This review represents a synthesis of the work of the author and her collaborators through 40 years of research aimed at an understanding of chromatin composition and functional arrangement. It describes the progressive experimental stages, starting with autoradiography and protein analysis and continuing on to a more functional approach testing the template properties of intact nuclei, as well as nuclei depleted of, or reconstituted with, defined fractions extracted from the chromatin of other cell lines or tissues. As new questions were raised at each phase of these studies, the investigation was shifted from chromosomal proteins to the role of a small RNA that coextracted with one protein fraction and whose properties suggested a transcription-activating function. The active RNA was identified as a class in RNA, designated as 7 SK. Its properties suggested a role in the activation of two oncogenes, the SV 40 T-antigen and the mammalian c-myc gene. A detailed analysis of the c-myc gene expression during transformation induction in temperature-sensitive mammalian cells finally culminated in in vivo evidence for a role of 7 SK in c-myc deregulation, using cells transfected with antisense oligonucleotides to block 7 SK activity. This was followed by an investigation of promoter targeting by 7 SK RNP using electrophoretic mobility shift assays with whole or 7 SK-depleted cell extracts. Taken together, these studies indicate that 7 SK RNP participates in transformation-dependent deregulation of the c-myc gene by activation of two c-myc minor promoters. The implications of these findings are discussed.Key words: chromatin structure, histones, nonhistones, 7 SK RNA, the c-myc gene, transcription regulation, SV 40, transformation.


2009 ◽  
Vol 185 (1) ◽  
pp. 87-100 ◽  
Author(s):  
Yan Hu ◽  
Igor Kireev ◽  
Matt Plutz ◽  
Nazanin Ashourian ◽  
Andrew S. Belmont

The structure of interphase chromosomes, and in particular the changes in large-scale chromatin structure accompanying transcriptional activation, remain poorly characterized. Here we use light microscopy and in vivo immunogold labeling to directly visualize the interphase chromosome conformation of 1–2 Mbp chromatin domains formed by multi-copy BAC transgenes containing 130–220 kb of genomic DNA surrounding the DHFR, Hsp70, or MT gene loci. We demonstrate near-endogenous transcription levels in the context of large-scale chromatin fibers compacted nonuniformly well above the 30-nm chromatin fiber. An approximately 1.5–3-fold extension of these large-scale chromatin fibers accompanies transcriptional induction and active genes remain mobile. Heat shock–induced Hsp70 transgenes associate with the exterior of nuclear speckles, with Hsp70 transcripts accumulating within the speckle. Live-cell imaging reveals distinct dynamic events, with Hsp70 transgenes associating with adjacent speckles, nucleating new speckles, or moving to preexisting speckles. Our results call for reexamination of classical models of interphase chromosome organization.


Sign in / Sign up

Export Citation Format

Share Document