Regulated expression of a mammalian nonsense suppressor tRNA gene in vivo and in vitro using the lac operator/repressor system

1992 ◽  
Vol 12 (10) ◽  
pp. 4271-4278
Author(s):  
D E Syroid ◽  
R I Tapping ◽  
J P Capone

We have exploited the Escherichia coli lac operator/repressor system as a means to regulate the expression of a mammalian tRNA gene in vivo and in vitro. An oligonucleotide containing a lac operator (lacO) site was cloned immediately upstream of a human serine amber suppressor (Su+) tRNA gene. Insertion of a single lac repressor binding site at position -1 or -32 relative to the coding region had no effect on the amount of functional tRNA made in vivo, as measured by suppression of a nonsense mutation in the E. coli chloramphenicol acetyltransferase gene following cotransfection of mammalian cells. Inclusion of a plasmid expressing the lac repressor in the transfections resulted in 75 to 98% inhibition of suppression activity of lac operator-linked tRNA genes but had no effect on expression of the wild-type gene. Inhibition could be quantitatively relieved with the allosteric inducer isopropylthio-beta-D-galactoside (IPTG). Similarly, transcription in vitro of lac operator-linked tRNA genes in HeLa cell extracts was repressed in the presence of lac repressor, and this inhibition was reversible with IPTG. These results demonstrate that the bacterial lac operator/repressor system can be used to reversibly control the expression of mammalian genes that are transcribed by RNA polymerase III.

1992 ◽  
Vol 12 (10) ◽  
pp. 4271-4278 ◽  
Author(s):  
D E Syroid ◽  
R I Tapping ◽  
J P Capone

We have exploited the Escherichia coli lac operator/repressor system as a means to regulate the expression of a mammalian tRNA gene in vivo and in vitro. An oligonucleotide containing a lac operator (lacO) site was cloned immediately upstream of a human serine amber suppressor (Su+) tRNA gene. Insertion of a single lac repressor binding site at position -1 or -32 relative to the coding region had no effect on the amount of functional tRNA made in vivo, as measured by suppression of a nonsense mutation in the E. coli chloramphenicol acetyltransferase gene following cotransfection of mammalian cells. Inclusion of a plasmid expressing the lac repressor in the transfections resulted in 75 to 98% inhibition of suppression activity of lac operator-linked tRNA genes but had no effect on expression of the wild-type gene. Inhibition could be quantitatively relieved with the allosteric inducer isopropylthio-beta-D-galactoside (IPTG). Similarly, transcription in vitro of lac operator-linked tRNA genes in HeLa cell extracts was repressed in the presence of lac repressor, and this inhibition was reversible with IPTG. These results demonstrate that the bacterial lac operator/repressor system can be used to reversibly control the expression of mammalian genes that are transcribed by RNA polymerase III.


1986 ◽  
Vol 6 (7) ◽  
pp. 2663-2673 ◽  
Author(s):  
M C Strobel ◽  
J Abelson

The Saccharomyces cerevisiae leucine-inserting amber suppressor tRNA gene SUP53 (a tRNALeu3 allele) was used to investigate the relationship between precursor tRNA structure and mature tRNA function. This gene encodes a pre-tRNA which contains a 32-base intron. The mature tRNASUP53 contains a 5-methylcytosine modification of the anticodon wobble base. Mutations were made in the SUP53 intron. These mutant genes were transcribed in an S. cerevisiae nuclear extract preparation. In this extract, primary tRNA gene transcripts are end-processed and base modified after addition of cofactors. The base modifications made in vitro were examined, and the mutant pre-tRNAs were analyzed for their ability to serve as substrates for partially purified S. cerevisiae tRNA endonuclease and ligase. Finally, the suppressor function of these mutant tRNA genes was assayed after their integration into the S. cerevisiae genome. Mutant analysis showed that the totally intact precursor tRNA, rather than any specific sequence or structure of the intron, was necessary for efficient nonsense suppression by tRNASUP53. Less efficient suppressor activity correlated with the absence of the 5-methylcytosine modification. Most of the intron-altered precursor tRNAs were successfully spliced in vitro, indicating that modifications are not critical for recognition by the tRNA endonuclease and ligase.


1992 ◽  
Vol 12 (9) ◽  
pp. 4015-4025
Author(s):  
R H Morse ◽  
S Y Roth ◽  
R T Simpson

Incorporation into a positioned nucleosome of a cis-acting element essential for replication in Saccharomyces cerevisiae disrupts the function of the element in vivo [R. T. Simpson, Nature (London) 343:387-389, 1990]. Furthermore, nucleosome positioning has been implicated in repression of transcription by RNA polymerase II in yeast cells. We have now asked whether the function of cis-acting elements essential for transcription of a gene transcribed by RNA polymerase III can be similarly affected. A tRNA gene was fused to either of two nucleosome positioning signals such that the predicted nucleosome would incorporate near its center the tRNA start site and essential A-box element. These constructs were then introduced into yeast cells on stably maintained, multicopy plasmids. Competent tRNA genes were transcribed in vivo and were not incorporated into positioned nucleosomes. Mutated, inactive tRNA genes were incorporated into nucleosomes whose positions were as predicted. This finding demonstrates that the transcriptional competence of the tRNA gene determined its ability to override a nucleosome positioning signal in vivo and establishes that a hierarchy exists between cis-acting elements and nucleosome positioning signals.


2001 ◽  
Vol 75 (11) ◽  
pp. 4973-4983 ◽  
Author(s):  
Eugene V. Barsov ◽  
William S. Payne ◽  
Stephen H. Hughes

ABSTRACT We have designed and characterized two new replication-competent avian sarcoma/leukosis virus-based retroviral vectors with amphotropic and ecotropic host ranges. The amphotropic vector RCASBP-M2C(797-8), was obtained by passaging the chimeric retroviral vector RCASBP-M2C(4070A) (6) in chicken embryos. The ecotropic vector, RCASBP(Eco), was created by replacing theenv-coding region in the retroviral vector RCASBP(A) with the env region from an ecotropic murine leukemia virus. It replicates efficiently in avian DFJ8 cells that express murine ecotropic receptor. For both vectors, permanent cell lines that produce viral stocks with titers of about 5 × 106 CFU/ml on mammalian cells can be easily established by passaging transfected avian cells. Some chimeric viruses, for example, RCASBP(Eco), replicate efficiently without modifications. For those chimeric viruses that do require modification, adaptation by passage in vitro or in vivo is a general strategy. This strategy has been used to prepare vectors with altered host range and could potentially be used to develop vectors that would be useful for targeted gene delivery.


2005 ◽  
Vol 25 (11) ◽  
pp. 4552-4564 ◽  
Author(s):  
Pernette J. Verschure ◽  
Ineke van der Kraan ◽  
Wim de Leeuw ◽  
Johan van der Vlag ◽  
Anne E. Carpenter ◽  
...  

ABSTRACT Changes in chromatin structure are a key aspect in the epigenetic regulation of gene expression. We have used a lac operator array system to visualize by light microscopy the effect of heterochromatin protein 1 (HP1) α (HP1α) and HP1β on large-scale chromatin structure in living mammalian cells. The structure of HP1, containing a chromodomain, a chromoshadow domain, and a hinge domain, allows it to bind to a variety of proteins. In vivo targeting of an enhanced green fluorescent protein-tagged HP1-lac repressor fusion to a lac operator-containing, gene-amplified chromosome region causes local condensation of the higher-order chromatin structure, recruitment of the histone methyltransferase SETDB1, and enhanced trimethylation of histone H3 lysine 9. Polycomb group proteins of both the HPC/HPH and the EED/EZH2 complexes, which are involved in the heritable repression of gene activity, are not recruited to the amplified chromosome region by HP1α and HP1β in vivo targeting. HP1α targeting causes the recruitment of endogenous HP1β to the chromatin region and vice versa, indicating a direct interaction between the two HP1 homologous proteins. Our findings indicate that HP1α and HP1β targeting is sufficient to induce heterochromatin formation.


2002 ◽  
Vol 22 (11) ◽  
pp. 3757-3768 ◽  
Author(s):  
Imogen M. Johnston ◽  
Simon J. Allison ◽  
Jennifer P. Morton ◽  
Laura Schramm ◽  
Pamela H. Scott ◽  
...  

ABSTRACT CK2 is a highly conserved protein kinase with growth-promoting and oncogenic properties. It is known to activate RNA polymerase III (PolIII) transcription in Saccharomyces cerevisiae and is shown here to also exert a potent effect on PolIII in mammalian cells. Peptide and chemical inhibitors of CK2 block PolIII transcription in human cell extracts. Furthermore, PolIII transcription in mammalian fibroblasts is decreased significantly when CK2 activity is compromised by chemical inhibitors, antisense oligonucleotides, or kinase-inactive mutants. Coimmunoprecipitation and cofractionation show that endogenous human CK2 associates stably and specifically with the TATA-binding protein-containing factor TFIIIB, which brings PolIII to the initiation site of all class III genes. Serum stimulates TFIIIB phosphorylation in vivo, an effect that is diminished by inhibitors of CK2. Binding to TFIIIC2 recruits TFIIIB to most PolIII promoters; this interaction is compromised specifically by CK2 inhibitors. The data suggest that CK2 stimulates PolIII transcription by binding and phosphorylating TFIIIB and facilitating its recruitment by TFIIIC2. CK2 also activates PolI transcription in mammals and may therefore provide a mechanism to coregulate the output of PolI and PolIII. CK2 provides a rare example of an endogenous activity that operates on the PolIII system in both mammals and yeasts. Such evolutionary conservation suggests that this control may be of fundamental importance.


1990 ◽  
Vol 10 (7) ◽  
pp. 3343-3356
Author(s):  
M A Labow ◽  
S B Baim ◽  
T Shenk ◽  
A J Levine

A novel mammalian regulatory system was created by using the Escherichia coli lac repressor. The lac repressor was converted into a mammalian transcriptional activator by modifying the lac repressor coding region to include a nuclear localization signal from the simian virus 40 (SV40) large tumor antigen and the transcription activation domain from the herpes simplex virus type 1 virion protein 16. The lac activator protein (LAP) fusions were potent activators of several promoters containing lac operator sequences positioned either upstream or downstream of the transcription unit. A single lac operator allowed for transactivation, whereas multiple operators acted synergistically when separated by a small distance. Promoters containing 14 or 21 operator sequences were induced at least 1,000-fold in response to LAP, reaching levels of activity 20 to 30 times greater than that of the SV40 early promoter in HeLa cells. Activation was strongly inhibited by isopropyl-beta-D-thiogalactoside (IPTG), indicating that LAP retained the functions needed for allosteric regulation. LAP was bifunctional, also acting as a repressor of expression of an SV40 promoter containing an operator immediately downstream of the TATA box. Finally, genetic selection schemes were developed such that LAP-expressing cell lines can be generated at high frequency from either established or primary cells in culture.


1990 ◽  
Vol 10 (7) ◽  
pp. 3343-3356 ◽  
Author(s):  
M A Labow ◽  
S B Baim ◽  
T Shenk ◽  
A J Levine

A novel mammalian regulatory system was created by using the Escherichia coli lac repressor. The lac repressor was converted into a mammalian transcriptional activator by modifying the lac repressor coding region to include a nuclear localization signal from the simian virus 40 (SV40) large tumor antigen and the transcription activation domain from the herpes simplex virus type 1 virion protein 16. The lac activator protein (LAP) fusions were potent activators of several promoters containing lac operator sequences positioned either upstream or downstream of the transcription unit. A single lac operator allowed for transactivation, whereas multiple operators acted synergistically when separated by a small distance. Promoters containing 14 or 21 operator sequences were induced at least 1,000-fold in response to LAP, reaching levels of activity 20 to 30 times greater than that of the SV40 early promoter in HeLa cells. Activation was strongly inhibited by isopropyl-beta-D-thiogalactoside (IPTG), indicating that LAP retained the functions needed for allosteric regulation. LAP was bifunctional, also acting as a repressor of expression of an SV40 promoter containing an operator immediately downstream of the TATA box. Finally, genetic selection schemes were developed such that LAP-expressing cell lines can be generated at high frequency from either established or primary cells in culture.


1992 ◽  
Vol 12 (9) ◽  
pp. 4015-4025 ◽  
Author(s):  
R H Morse ◽  
S Y Roth ◽  
R T Simpson

Incorporation into a positioned nucleosome of a cis-acting element essential for replication in Saccharomyces cerevisiae disrupts the function of the element in vivo [R. T. Simpson, Nature (London) 343:387-389, 1990]. Furthermore, nucleosome positioning has been implicated in repression of transcription by RNA polymerase II in yeast cells. We have now asked whether the function of cis-acting elements essential for transcription of a gene transcribed by RNA polymerase III can be similarly affected. A tRNA gene was fused to either of two nucleosome positioning signals such that the predicted nucleosome would incorporate near its center the tRNA start site and essential A-box element. These constructs were then introduced into yeast cells on stably maintained, multicopy plasmids. Competent tRNA genes were transcribed in vivo and were not incorporated into positioned nucleosomes. Mutated, inactive tRNA genes were incorporated into nucleosomes whose positions were as predicted. This finding demonstrates that the transcriptional competence of the tRNA gene determined its ability to override a nucleosome positioning signal in vivo and establishes that a hierarchy exists between cis-acting elements and nucleosome positioning signals.


1988 ◽  
Vol 8 (1) ◽  
pp. 361-370
Author(s):  
S Ganguly ◽  
P A Sharp ◽  
U L RajBhandary

We describe the results of our studies of expression of a Saccharomyces cerevisiae amber suppressor tRNA(Leu) gene (SUP53) in mammalian cells in vivo and in cell extracts in vitro. Parallel studies were carried out with the wild-type (Su-) tRNA(Leu) gene. Extracts from HeLa or CV1 cells transcribed both tRNA(Leu) genes. The transcripts were processed correctly at the 5' and 3' ends and accurately spliced to produce mature tRNA(Leu). Surprisingly, when the same tRNA(Leu) genes were introduced into CV1 cells, only pre-tRNAs(Leu) were produced. The pre-tRNAs(Leu) made in vivo were of the same size and contained the 5'-leader and 3'-trailer sequences as did pre-tRNAs(Leu) made in vitro. Furthermore, the pre-tRNAs(Leu) made in vivo were processed to mature tRNA(Leu) when incubated with HeLa cell extracts. A tRNA(Leu) gene from which the intervening sequence had been removed yielded RNAs that also were not processed at either their 5' or 3' termini. Thus, processing of pre-tRNA(Leu) in CV1 cells is blocked at the level of 5'- and 3'-end maturation. One possible explanation of the discrepancy in the results obtained in vivo and in vitro is that tRNA biosynthesis in mammalian cells involves transport of pre-tRNA from the site of its synthesis to a site or sites where processing takes place, and perhaps the yeast pre-tRNAs(Leu) synthesized in CV1 cells are not transported to the appropriate site.


Sign in / Sign up

Export Citation Format

Share Document