scholarly journals Rapid reversible changes in the rate of histone gene transcription and histone mRNA levels in mouse myeloma cells.

1984 ◽  
Vol 4 (2) ◽  
pp. 351-357 ◽  
Author(s):  
R A Graves ◽  
W F Marzluff

The levels of histone mRNAs are reduced 90 to 95% after treatment of mouse myeloma cells with inhibitors of DNA synthesis which disrupt deoxynucleotide metabolism. In contrast, novobiocin, which inhibits DNA synthesis but does not alter deoxynucleotide metabolism, did not alter histone mRNA levels. Upon reversing the inhibition by fluorodeoxyuridine by feeding with thymidine, histone mRNA levels are restored to control levels within 40 to 60 min. The rate of histone gene transcription is reduced 75 to 80% within 10 min after treatment with fluorodeoxyuridine and increased to control levels within 10 min after refeeding with thymidine. Inhibition of protein synthesis with cycloheximide or puromycin in cells which had been treated with fluorodeoxyuridine resulted in an increase of histone mRNA levels. This was partly due to an increase in the rate of transcription. The data indicate that both transcription and mRNA degradation are linked to deoxynucleotide metabolism. Continued protein synthesis is necessary for maintaining the inhibition of histone gene transcription.

1984 ◽  
Vol 4 (2) ◽  
pp. 351-357
Author(s):  
R A Graves ◽  
W F Marzluff

The levels of histone mRNAs are reduced 90 to 95% after treatment of mouse myeloma cells with inhibitors of DNA synthesis which disrupt deoxynucleotide metabolism. In contrast, novobiocin, which inhibits DNA synthesis but does not alter deoxynucleotide metabolism, did not alter histone mRNA levels. Upon reversing the inhibition by fluorodeoxyuridine by feeding with thymidine, histone mRNA levels are restored to control levels within 40 to 60 min. The rate of histone gene transcription is reduced 75 to 80% within 10 min after treatment with fluorodeoxyuridine and increased to control levels within 10 min after refeeding with thymidine. Inhibition of protein synthesis with cycloheximide or puromycin in cells which had been treated with fluorodeoxyuridine resulted in an increase of histone mRNA levels. This was partly due to an increase in the rate of transcription. The data indicate that both transcription and mRNA degradation are linked to deoxynucleotide metabolism. Continued protein synthesis is necessary for maintaining the inhibition of histone gene transcription.


1992 ◽  
Vol 12 (11) ◽  
pp. 5249-5259 ◽  
Author(s):  
H Xu ◽  
U J Kim ◽  
T Schuster ◽  
M Grunstein

Histone mRNA synthesis is tightly regulated to S phase of the yeast Saccharomyces cerevisiae cell cycle as a result of transcriptional and posttranscriptional controls. Moreover, histone gene transcription decreases rapidly if DNA replication is inhibited by hydroxyurea or if cells are arrested in G1 by the mating pheromone alpha-factor. To identify the transcriptional controls responsible for cycle-specific histone mRNA synthesis, we have developed a selection for mutations which disrupt this process. Using this approach, we have isolated five mutants (hpc1, hpc2, hpc3, hpc4, and hpc5) in which cell cycle regulation of histone gene transcription is altered. All of these mutations are recessive and belong to separate complementation groups. Of these, only one (hpc1) falls in one of the three complementation groups identified previously by other means (M. A. Osley and D. Lycan, Mol. Cell. Biol. 7:4204-4210, 1987), indicating that at least seven different genes are involved in the cell cycle-specific regulation of histone gene transcription. hpc4 is unique in that derepression occurs only in the presence of hydroxyurea but not alpha-factor, suggesting that at least one of the regulatory factors is specific to histone gene transcription after DNA replication is blocked. One of the hpc mutations (hpc2) suppresses delta insertion mutations in the HIS4 and LYS2 loci. This effect allowed the cloning and sequence analysis of HPC2, which encodes a 67.5-kDa, highly charged basic protein.


1986 ◽  
Vol 64 (2) ◽  
pp. 99-105 ◽  
Author(s):  
R. Curtis Bird ◽  
Frederik A. Jacobs ◽  
Bruce H. Sells

Synthesis of histone mRNAs is closely coupled to DNA synthesis. Following inhibition of DNA synthesis in L6 myoblasts with cytosine arabinoside, a coordinate and exaggerated rate of degradation of histone mRNAs occurs while other mRNAs, encoding ribosomal protein L32 and actin, are unaffected. Inhibition of protein synthesis by puromycin, emetine, or cycloheximide stabilizes histone mRNAs and results in their accumulation. When inhibition of DNA synthesis was followed immediately by inhibition of protein synthesis, the exaggerated rate of decay of the existing subspecies of histone H4 mRNAs was prevented and histone mRNA accumulated. If inhibition of protein synthesis was delayed longer than 3 minutes following inhibition of DNA synthesis, the ability to accumulate H4 mRNAs was lost. Furthermore, new protein synthesis was required to activate the mechanism which specifically destabilized histone mRNA. Puromycin was able to prevent the exaggerated rate of degradation of the various subspecies of H4 mRNA when added up to 15 min after inhibition of DNA synthesis, whereas emetine was effective only when added up to 5 min following inhibition of DNA synthesis. These data suggest that histone H4 mRNAs in polysomes are better targets than those released from polysomes for the specific mechanism which destabilizes histone mRNAs upon inhibition of DNA synthesis.


1992 ◽  
Vol 12 (11) ◽  
pp. 5249-5259 ◽  
Author(s):  
H Xu ◽  
U J Kim ◽  
T Schuster ◽  
M Grunstein

Histone mRNA synthesis is tightly regulated to S phase of the yeast Saccharomyces cerevisiae cell cycle as a result of transcriptional and posttranscriptional controls. Moreover, histone gene transcription decreases rapidly if DNA replication is inhibited by hydroxyurea or if cells are arrested in G1 by the mating pheromone alpha-factor. To identify the transcriptional controls responsible for cycle-specific histone mRNA synthesis, we have developed a selection for mutations which disrupt this process. Using this approach, we have isolated five mutants (hpc1, hpc2, hpc3, hpc4, and hpc5) in which cell cycle regulation of histone gene transcription is altered. All of these mutations are recessive and belong to separate complementation groups. Of these, only one (hpc1) falls in one of the three complementation groups identified previously by other means (M. A. Osley and D. Lycan, Mol. Cell. Biol. 7:4204-4210, 1987), indicating that at least seven different genes are involved in the cell cycle-specific regulation of histone gene transcription. hpc4 is unique in that derepression occurs only in the presence of hydroxyurea but not alpha-factor, suggesting that at least one of the regulatory factors is specific to histone gene transcription after DNA replication is blocked. One of the hpc mutations (hpc2) suppresses delta insertion mutations in the HIS4 and LYS2 loci. This effect allowed the cloning and sequence analysis of HPC2, which encodes a 67.5-kDa, highly charged basic protein.


1989 ◽  
Vol 264 (25) ◽  
pp. 15034-15042 ◽  
Author(s):  
A J van Wijnen ◽  
K L Wright ◽  
J B Lian ◽  
J L Stein ◽  
G S Stein

1993 ◽  
Vol 217 (2) ◽  
pp. 683-690 ◽  
Author(s):  
Peter ZAHRADKA ◽  
Tracy ELLIOT ◽  
Kenneth HOVLAND ◽  
Dawn E. LARSON ◽  
Laura SAWARD

2021 ◽  
pp. mbc.E20-10-0645
Author(s):  
James P. Kemp ◽  
Xiao-Cui Yang ◽  
Zbigniew Dominski ◽  
William F. Marzluff ◽  
Robert J. Duronio

The Histone Locus Body (HLB) is an evolutionarily conserved nuclear body that regulates the transcription and processing of replication-dependent (RD) histone mRNAs, which are the only eukaryotic mRNAs lacking a poly-A tail. Many nuclear bodies contain distinct domains, but how internal organization is related to nuclear body function is not fully understood. Here, we demonstrate using structured illumination microscopy that Drosophila HLBs have a “core-shell” organization in which the internal core contains transcriptionally active RD histone genes. The N-terminus of Mxc, which contains a domain required for Mxc oligomerization, HLB assembly, and RD histone gene expression, is enriched in the HLB core. In contrast, the C-terminus of Mxc is enriched in the HLB outer shell as is FLASH, a component of the active U7 snRNP that co-transcriptionally cleaves RD histone pre-mRNA. Consistent with these results, we show biochemically that FLASH binds directly to the Mxc C-terminal region. In the rapid S-M nuclear cycles of syncytial blastoderm Drosophila embryos, the HLB disassembles at mitosis and reassembles the core-shell arrangement as histone gene transcription is activated immediately after mitosis. Thus, the core-shell organization is coupled to zygotic histone gene transcription, revealing a link between HLB internal organization and RD histone gene expression.


2012 ◽  
Vol 109 (15) ◽  
pp. 5693-5698 ◽  
Author(s):  
T. Ideue ◽  
S. Adachi ◽  
T. Naganuma ◽  
A. Tanigawa ◽  
T. Natsume ◽  
...  

Author(s):  
Gary Stein ◽  
Janet Stein ◽  
Lewis Kleinsmith ◽  
William Park ◽  
Robert Jansing ◽  
...  

1981 ◽  
Vol 9 (7) ◽  
pp. 1591-1598 ◽  
Author(s):  
Sam Bruschi ◽  
Julian R.E. Wells

Sign in / Sign up

Export Citation Format

Share Document