scholarly journals Characterization, expression, and evolution of the mouse embryonic zeta-globin gene.

1985 ◽  
Vol 5 (5) ◽  
pp. 1025-1033 ◽  
Author(s):  
A Leder ◽  
L Weir ◽  
P Leder

We have determined the complete sequence of the embryonic alpha-like, zeta (zeta)-globin gene of the BALB/c mouse. The structure of this gene establishes the amino acid sequence of the mouse embryonic zeta-globin polypeptide chain and allows us to identify sequences within the gene that may be important for its expression. One of these is a 300-base segment that is tightly conserved between mice and humans and is located at the 5' end of the zeta-globin gene. By introducing the cloned gene into permanently transfected mouse erythroleukemic cell lines and comparing its transcript with that of zeta-globin mRNA derived from embryonic yolk sac erythrocytes, we are able to show that the cloned gene is transcriptionally active and that its transcript is correctly initiated and processed. Interestingly, the zeta-globin gene is also active when permanently transfected into an immunoglobulin-producing B-cell, a cell that presumably has tissue-specific requirements for gene expression. Further, a comparison of the amino acid coding sequence of the mouse zeta-globin gene to that of zeta-like globin genes of other species supports a revised evolutionary lineage in which goats and humans are closely related, whereas mice are further removed.

1985 ◽  
Vol 5 (5) ◽  
pp. 1025-1033
Author(s):  
A Leder ◽  
L Weir ◽  
P Leder

We have determined the complete sequence of the embryonic alpha-like, zeta (zeta)-globin gene of the BALB/c mouse. The structure of this gene establishes the amino acid sequence of the mouse embryonic zeta-globin polypeptide chain and allows us to identify sequences within the gene that may be important for its expression. One of these is a 300-base segment that is tightly conserved between mice and humans and is located at the 5' end of the zeta-globin gene. By introducing the cloned gene into permanently transfected mouse erythroleukemic cell lines and comparing its transcript with that of zeta-globin mRNA derived from embryonic yolk sac erythrocytes, we are able to show that the cloned gene is transcriptionally active and that its transcript is correctly initiated and processed. Interestingly, the zeta-globin gene is also active when permanently transfected into an immunoglobulin-producing B-cell, a cell that presumably has tissue-specific requirements for gene expression. Further, a comparison of the amino acid coding sequence of the mouse zeta-globin gene to that of zeta-like globin genes of other species supports a revised evolutionary lineage in which goats and humans are closely related, whereas mice are further removed.


1990 ◽  
Vol 10 (7) ◽  
pp. 3591-3595
Author(s):  
N Beru ◽  
P B Maples ◽  
O Hermine ◽  
E Goldwasser

The IW32, NN10, and IW201 cell lines are erythroleukemic cell lines isolated from the spleens of mice infected with the Friend virus. IW32 and NN10 cells can be induced toward erythroid differentiation and hemoglobin synthesis by hemin or butyrate. Both cell lines contain some mature alpha- and beta-globin mRNA before induction, and addition of the inducers greatly increases the amount of globin message. Unlike IW32 and NN10 cells, IW201 cells are only partially inducible. Uninduced 201 cells contain a small amount of alpha-globin mRNA but no detectable beta-globin message. After induction, the cells contain markedly increased amounts of alpha-globin mRNA but still do not express the beta-globin gene. Southern blot analysis with 10 restriction enzymes shows that the restriction map of the beta-globin gene in IW201 cells is indistinguishable from that in IW32 and NN10 cells.


1990 ◽  
Vol 10 (7) ◽  
pp. 3591-3595 ◽  
Author(s):  
N Beru ◽  
P B Maples ◽  
O Hermine ◽  
E Goldwasser

The IW32, NN10, and IW201 cell lines are erythroleukemic cell lines isolated from the spleens of mice infected with the Friend virus. IW32 and NN10 cells can be induced toward erythroid differentiation and hemoglobin synthesis by hemin or butyrate. Both cell lines contain some mature alpha- and beta-globin mRNA before induction, and addition of the inducers greatly increases the amount of globin message. Unlike IW32 and NN10 cells, IW201 cells are only partially inducible. Uninduced 201 cells contain a small amount of alpha-globin mRNA but no detectable beta-globin message. After induction, the cells contain markedly increased amounts of alpha-globin mRNA but still do not express the beta-globin gene. Southern blot analysis with 10 restriction enzymes shows that the restriction map of the beta-globin gene in IW201 cells is indistinguishable from that in IW32 and NN10 cells.


Development ◽  
1992 ◽  
Vol 116 (4) ◽  
pp. 1041-1049 ◽  
Author(s):  
A. Leder ◽  
A. Kuo ◽  
M.M. Shen ◽  
P. Leder

Murine erythropoiesis begins with the formation of primitive red blood cells in the blood islands of the embryonic yolk sac on day 7.5 of gestation. By analogy to human erythropoiesis, it has been thought that there is a gradual switch from the exclusive expression of the embryonic alpha-like globin (zeta) to the mature adult form (alpha) in these early mouse cells. We have used in situ hybridization to assess expression of these two globin genes during embryonic development. In contrast to what might have been expected, we find that there is simultaneous expression of both zeta and alpha genes from the very onset of erythropoiesis in the yolk sac. At no time could we detect expression of embryonic zeta globin mRNA without concomitant expression of adult alpha globin mRNA. Indeed, adult alpha transcripts exceed those of embryonic zeta in the earliest red cell precursors. Moreover, the pattern of hybridization reveals co-expression of both genes within the same cells. Even in the fetal liver, which supersedes the yolk sac as the major site of murine fetal erythropoiesis, there is a brief co-expression of zeta and alpha genes followed by the exclusive expression of the adult alpha genes. These data indicate an important difference in hematopoietic ontogeny between mouse and that of human, where zeta expression precedes that of alpha. In addition to resolving the embryonic expression of these globin genes, our results suggest that the embryonic alpha-like globin gene zeta may be physiologically redundant, even during the earliest stages of embryonic development.


1998 ◽  
Vol 18 (11) ◽  
pp. 6634-6640 ◽  
Author(s):  
Denise E. Sabatino ◽  
Amanda P. Cline ◽  
Patrick G. Gallagher ◽  
Lisa J. Garrett ◽  
George Stamatoyannopoulos ◽  
...  

ABSTRACT During development, changes occur in both the sites of erythropoiesis and the globin genes expressed at each developmental stage. Previous work has shown that high-level expression of human β-like globin genes in transgenic mice requires the presence of the locus control region (LCR). Models of hemoglobin switching propose that the LCR and/or stage-specific elements interact with globin gene sequences to activate specific genes in erythroid cells. To test these models, we generated transgenic mice which contain the human Aγ-globin gene linked to a 576-bp fragment containing the human β-spectrin promoter. In these mice, the β-spectrin Aγ-globin (βsp/Aγ) transgene was expressed at high levels in erythroid cells throughout development. Transgenic mice containing a 40-kb cosmid construct with the micro-LCR, βsp/Aγ-, ψβ-, δ-, and β-globin genes showed no developmental switching and expressed both human γ- and β-globin mRNAs in erythroid cells throughout development. Mice containing control cosmids with the Aγ-globin gene promoter showed developmental switching and expressed Aγ-globin mRNA in yolk sac and fetal liver erythroid cells and β-globin mRNA in fetal liver and adult erythroid cells. Our results suggest that replacement of the γ-globin promoter with the β-spectrin promoter allows the expression of the β-globin gene. We conclude that the γ-globin promoter is necessary and sufficient to suppress the expression of the β-globin gene in yolk sac erythroid cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1590-1590
Author(s):  
Donald Lavelle ◽  
Kestis Vaitkus ◽  
Mahipal Singh ◽  
Maria Hankewych ◽  
Joseph DeSimone

Abstract The human Gγ-globin and Aγ-globin genes differ by the presence of a single amino acid, either glycine or alanine, at position 136. The ratio of Gγ/Aγ-globin expression is approximately 7/3 at birth and changes to 2/3 in the adult. The mechanism responsible for this developmental switch is unknown. In the baboon, the duplicated γ-globin genes differ by the presence of a single amino acid at position 75. The Iγ-globin gene contains isoleucine at position 75, while the Vγ-globin gene contains valine at this position. The ratio of expression of the Iγ and Vγ-globin chains also differs in the fetal and adult stages. The Iγ/Vγ ratio is 3/2 in the fetus and 2/3 in the adult. Thus the pattern of expression of the baboon Iγ-globin gene is analogous to the human Gγ-globin gene, and that of the Vγ-globin gene is analogous to the human Aγ-globin gene. During stress erythropoiesis, moderately increased HbF levels are observed (5–10% HbF) and the Iγ/Vγ-globin chains are expressed in the characteristic adult ratio. Decitabine treatment reactivates HbF expression to high levels (50–70% HbF) and Iγ/Vγ ratios of approximately 1:1 have been observed following decitabine treatment. Thus decitabine treatment alters the Iγ/Vγ ratio but does not cause a complete reversion to the fetal pattern of expression. HbF is also reactivated to high levels in cultured baboon BFUe. In this investigation the pattern of expression of the Iγ- and Vγ-globin genes in cultured baboon CD34+ bone marrow (BM) cells was analyzed to determine whether reactivation of HbF in culture was associated with a change in the pattern of expression of the Iγ-and Vγ-globin genes. CD34+ cells were enriched from baboon BM using the 12.8 monoclonal antibody in combination with immunomagnetic microbead columns (Miltenyi) and cultured in Iscove’s media supplemented with 30% fetal bovine serum, stem cell factor (SCF; 200ng/ml), erythropoietin (EPO; 2U/ml), and dexamethasone (Dex; 1μM). The pattern of globin chain expression in d12 cultures, cord blood (CB) of a 58d fetus, and peripheral blood (PB) of adult baboons following phlebotomy and decitabine treatment was compared by HPLC analysis of hemolysates. The baboon 58d CB contained >90% HbF and the ratio of Iγ/Vγ was 1.85. In the adult (phlebotomized) PB the level of HbF was 8.1% and the Iγ/Vγ ratio was 0.75 thus confirming that the ratio of the baboon Iγ and Vγ-globin chains differs in the fetal and adult stages of development in a manner similar to that of the human Gγ and Aγ-globin chains. Following decitabine treatment (PA 7002) an HbF level of 55% was attained with an Iγ/Vγ ratio of 1.1. Hemolysates prepared from d12 cultures of CD34+ baboon (PA 7002) BM cells grown in the presence of SCF, EPO, and Dex contained 57.6% HbF, nearly the same level observed following decitabine treatment in vivo. The Iγ/Vγ ratio was 1.94, markedly different from that observed in this same baboon following decitabine in vivo and, moreover, nearly identical to the fetal ratio. Thus HbF reactivation in cultured adult baboon CD34+ BM cells was associated with a change in the ratio of expression of the two baboon γ-globin genes to that characteristic of the fetal stage. Recapitulation of the fetal pattern of γ-globin chain expression in cultured baboon CD34+ progenitors demonstrates yet another advantage of the baboon model for investigations of hemoglobin switching.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 555-555 ◽  
Author(s):  
Hassana Fathallah ◽  
Ali Taher ◽  
Ali Bazarbachi ◽  
George F. Atweh

Abstract A number of therapeutic agents including hydroxyurea, butyrate and decitabine have shown considerable promise in the treatment of sickle cell disease (SCD). However, the same agents have shown less clinical activity in β-thalassemia. As a first step towards understanding the molecular basis of the different clinical responses to these agents, we have studied the mechanisms of induction of fetal hemoglobin (HbF) by butyrate in BFU-E derived cells from 5 patients with SCD and 9 patients with β-thalassemia intermedia. Exposure to butyrate resulted in a dose-dependent augmentation of γ-globin mRNA levels in erythroid cells from patients with SCD. In contrast, induction of γ-globin expression in erythroid cells from patients with β-thalassemia intermedia was only seen at a high concentration of butyrate. The increase in γ-globin mRNA levels in patients with SCD and β-thalassemia intermedia was associated with opening of the DNA structure as manifested by decreased DNA methylation at the γ-globin promoters. Interestingly, butyrate exposure had markedly different effects on the expression of the β- and α-globin genes in the two categories of patients. Butyrate decreased the level of β-globin mRNA in 4 out of 5 patients with SCD (P = 0.04), while in β-thalassemia the levels of β-globin mRNA did not change in 7 patients and decreased in 2 patients after butyrate exposure (P = 0.12). Thus in patients with SCD, the effects of the induction of the γ-globin gene on the γ/(β+γ) mRNA ratios were further enhanced by the butyrate-mediated decreased expression of the β-globin gene. As a result, γ/(β+γ) mRNA ratios increased in all patients with SCD, with a mean increase of 31% (P = 0.002). In contrast, butyrate increased γ/(β+γ) mRNA ratios only in 4 out of 9 patients with β-thalassemia, with a more modest mean increase of 12% (P = 0.004). Interestingly, the decreased β-globin expression in patients with SCD was associated with closing of the DNA configuration as manifested by hypermethylation of DNA at the promoter of the β-globin gene while methylation of the same promoter did not change following butyrate exposure in patients with β-thalassemia intermedia. More surprisingly, the expression of the α-globin genes increased following butyrate exposure in 4 out of 9 patients with β-thalassemia, while the levels of α-globin mRNA decreased in 4 out of 5 patients with SCD. As a result, the favorable effects of the butyrate-induced increase in γ-globin gene expression on the α: non-α mRNA imbalance in patients with β-thalassemia intermedia were partly neutralized by the corresponding increase in α-globin gene expression. These differences may explain, at least in part, the more favorable effects of inducers of HbF in SCD than in β-thalassemia. Further studies are necessary to fully understand the molecular bases of the different responses to agents that induce HbF in patients with these disorders.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4102-4102
Author(s):  
Vladan P. Cokic ◽  
Bojana B. Beleslin-Cokic ◽  
Constance Tom Noguchi ◽  
Alan N. Schechter

Abstract We have previously shown that nitric oxide (NO) is involved in the hydroxyurea-induced increase of gamma-globin gene expression in cultured human erythroid progenitor cells and that hydroxyurea increases NO production in endothelial cells via endothelial NO synthase (NOS). Here we report that co-culture of human bone marrow endothelial cells with erythroid progenitor cells induced gamma-globin mRNA expression (1.8 fold), and was further elevated (2.4 fold) in the presence of hydroxyurea (40 μM). Based on these results, NOS-dependent stimulation of NO levels by bradykinin and lipopolysaccharide has been observed in endothelial (up to 0.3 μM of NO) and macrophage cells (up to 6 μM of NO), respectively. Bradykinin slightly increased gamma-globin mRNA levels in erythroid progenitor cells, but failed to increase gamma-globin mRNA levels in endothelial/erythroid cell co-cultures indicating that stimulation of endothelial cell production of NO alone is not sufficient to induce gamma-globin expression. In contrast, lipopolysaccharide and interferon-gamma mutually increased gamma-globin gene expression (2 fold) in macrophage/erythroid cell co-cultures. In addition, hydroxyurea (5–100 μM) induced NOS-dependent production of NO in human (up to 0.7 μM) and mouse macrophages (up to 1.2 μM). Co-culture studies of macrophages with erythroid progenitor cells also resulted in induction of gamma-globin mRNA expression (up to 3 fold) in the presence of hydroxyurea (20–100 μM). These results demonstrate a mechanism by which hydroxyurea may induce globin genes and affect changes in the phenotype of hematopoietic cells via the common paracrine effect of bone marrow stromal cells.


Blood ◽  
1999 ◽  
Vol 93 (7) ◽  
pp. 2208-2216 ◽  
Author(s):  
Qiliang Li ◽  
David W. Emery ◽  
Magali Fernandez ◽  
Hemei Han ◽  
George Stamatoyannopoulos

Progress toward gene therapy of β-chain hemoglobinopathies has been limited in part by poor expression of globin genes in virus vectors. To derive an optimal expression cassette, we systematically analyzed the sequence requirements and relative strengths of theAγ- and β-globin promoters, the activities of various erythroid-specific enhancers, and the importance of flanking and intronic sequences. Expression was analyzed by RNase protection after stable plasmid transfection of the murine erythroleukemia cell line, MEL585. Promoter truncation studies showed that theAγ-globin promoter could be deleted to −159 without affecting expression, while deleting the β-globin promoter to −127 actually increased expression compared with longer fragments. Expression from the optimal β-globin gene promoter was consistently higher than that from the optimal Aγ-globin promoter, regardless of the enhancer used. Enhancers tested included a 2.5-kb composite of the β-globin locus control region (termed a μLCR), a combination of the HS2 and HS3 core elements of the LCR, and the HS-40 core element of the -globin locus. All three enhancers increased expression from the β-globin gene to roughly the same extent, while the HS-40 element was notably less effective with theAγ-globin gene. However, the HS-40 element was able to efficiently enhance expression of a Aγ-globin gene linked to the β-globin promoter. Inclusion of extended 3′ sequences from either the β-globin or the Aγ-globin genes had no significant effect on expression. A 714-bp internal deletion ofAγ-globin intron 2 unexpectedly increased expression more than twofold. With the combination of a −127 β-globin promoter, anAγ-globin gene with the internal deletion of intron 2, and a single copy of the HS-40 enhancer, γ-globin expression averaged 166% of murine -globin mRNA per copy in six pools and 105% in nine clones. When placed in a retrovirus vector, this cassette was also expressed at high levels in MEL585 cells (averaging 75% of murine -globin mRNA per copy) without reducing virus titers. However, recombined provirus or aberrant splicing was observed in 5 of 12 clones, indicating a significant degree of genetic instability. Taken together, these data demonstrate the development of an optimal expression cassette for γ-globin capable of efficient expression in a retrovirus vector and form the basis for further refinement of vectors containing this cassette.


Blood ◽  
1984 ◽  
Vol 63 (5) ◽  
pp. 1253-1257
Author(s):  
AE Felice ◽  
MP Cleek ◽  
K McKie ◽  
V McKie ◽  
TH Huisman

Restriction endonuclease mapping with alpha and zeta-globin gene probes showed differences between the alpha-thalassemia-1 (alpha-thal-1) condition in two patients with HbH disease. One patient had the rare black type of alpha-thal-1 together with alpha-thal-2 and HbS heterozygosities. The second patient was a Laotian child with HbE, Hb Constant Spring (alpha-thal-2), and alpha-thal-1 heterozygosities. The diagnoses were based on clinical, hematologic, and biochemical data. Whereas DNA fragments hybridizing to a zeta-probe were obtained from the Laotian type of alpha-thal-1, neither alpha nor zeta-gene fragments could be identified deriving from the black type of alpha-thal-1. Therefore, the black type of alpha-thal-1 is associated with a deletion of the entire zeta 2-psi zeta-psi alpha-alpha 2-alpha 1 gene complex and can be considered a zeta alpha-thal-1. It is likely that homozygosity for such a condition will lead to embryonic wastage, explaining the absence of hydrops fetalis in blacks.


Sign in / Sign up

Export Citation Format

Share Document