scholarly journals Modulation of transcriptional activity and stable complex formation by 5'-flanking regions of mouse tRNAHis genes.

1986 ◽  
Vol 6 (1) ◽  
pp. 105-115 ◽  
Author(s):  
M J Morry ◽  
J D Harding

We determined the nucleotide sequences of three mouse tRNAHis genes and a tRNAGly gene present in two different lambda clones. One lambda clone contained two tRNAHis genes 600 base pairs (bp) apart in opposite orientations. The other clone contained a tRNAHis and a tRNAGly gene 569 bp apart in the same orientation. The coding regions of the three tRNAHis genes were identical to sequenced mammalian tRNAHis if posttranscriptional modifications are not considered. Notably, the three tRNAHis genes and a fourth gene previously sequenced by us contained within the flanking regions, various amounts of short, conserved 5' leader sequences and 3' trailer sequences directly abutting the coding regions. Otherwise the flanking regions were not homologous. Deletion mutants of one of the tRNAHis genes were constructed which contained 228, 99, 9, and 3 bp of the wild-type 5'-flanking region, respectively. Deletion of 5'-flanking sequences from positions -9 to -4 reduced transcriptional activity substantially (ca. fivefold) in a HeLa cell S-100 lysate. This effect was independent of the vector sequences in the deletion clone, implying that the region from -4 to -9 of the intact gene contains a positive modulatory element for transcription in vitro. The deletion mutant containing 3 bp of wild-type 5'-flanking sequence also had a greatly reduced ability to inhibit the transcription of a second tRNA gene in a competition assay. Thus, the normal 5'-flanking region influences the ability of the gene to form stable complexes with transcription factors. These data further indicate that a mammalian transcription extract is sensitive to 5'-flanking-region effects if a suitable tRNA gene is assayed.

1986 ◽  
Vol 6 (1) ◽  
pp. 105-115
Author(s):  
M J Morry ◽  
J D Harding

We determined the nucleotide sequences of three mouse tRNAHis genes and a tRNAGly gene present in two different lambda clones. One lambda clone contained two tRNAHis genes 600 base pairs (bp) apart in opposite orientations. The other clone contained a tRNAHis and a tRNAGly gene 569 bp apart in the same orientation. The coding regions of the three tRNAHis genes were identical to sequenced mammalian tRNAHis if posttranscriptional modifications are not considered. Notably, the three tRNAHis genes and a fourth gene previously sequenced by us contained within the flanking regions, various amounts of short, conserved 5' leader sequences and 3' trailer sequences directly abutting the coding regions. Otherwise the flanking regions were not homologous. Deletion mutants of one of the tRNAHis genes were constructed which contained 228, 99, 9, and 3 bp of the wild-type 5'-flanking region, respectively. Deletion of 5'-flanking sequences from positions -9 to -4 reduced transcriptional activity substantially (ca. fivefold) in a HeLa cell S-100 lysate. This effect was independent of the vector sequences in the deletion clone, implying that the region from -4 to -9 of the intact gene contains a positive modulatory element for transcription in vitro. The deletion mutant containing 3 bp of wild-type 5'-flanking sequence also had a greatly reduced ability to inhibit the transcription of a second tRNA gene in a competition assay. Thus, the normal 5'-flanking region influences the ability of the gene to form stable complexes with transcription factors. These data further indicate that a mammalian transcription extract is sensitive to 5'-flanking-region effects if a suitable tRNA gene is assayed.


1990 ◽  
Vol 272 (3) ◽  
pp. 797-803 ◽  
Author(s):  
E S Gonos ◽  
J P Goddard

The role of a tRNA-like structure within the 5′-flanking sequence of a human tRNA(Glu) gene in the modulation of its transcription in vitro by HeLa cell extracts has been investigated using several deletion mutants of a recombinant of the gene which lacked part or all of the tRNA-like structure. The transcriptional efficiency of four mutants was the same as that of the wild-type recombinant, two mutants had decreased transcriptional efficiency, one was more efficient, and one, lacking part of the 5′ intragenic control region, was inactive. Correlation of the transcriptional efficiencies with the position and the size of the 5′-flanking sequence that was deleted indicated that the tRNA-like structure may be deleted without loss of transcriptional efficiency. Current models for the modulation of tRNA gene transcription by the 5′-flanking sequence are assessed in the light of the results obtained, and a potential model is presented.


1983 ◽  
Vol 3 (11) ◽  
pp. 1996-2005
Author(s):  
R A Bhat ◽  
B Metz ◽  
B Thimmappaya

The intragenic transcriptional control region (internal promoter) of the adenovirus type 2 VAI RNA gene was mutated by deletion, insertion, and substitution of DNA sequences at the plasmid level. The mutant plasmids were assayed for in vitro transcriptional activity by using HeLa cell extracts. The mutant clones with substitution or insertion of DNA sequences or both between nucleotides +18 and +53 of the VAI RNA gene were all transcriptionally active, although to various extents. Substitution of unrelated DNA sequences up to +26 or between +54 and +61 abolished the transcriptional activity completely. Based on these results, the intragenic promoter sequences of the VAI RNA gene can be subdivided into two components: element A, +10 to +18; and element B, +54 to +69. The distance between the A and B components could be enlarged from its normal 35 base pairs to 75 base pairs without destroying the transcriptional activity. However, a deletion of 4 or 6 base pairs in the DNA segment separating the A and B components (segment C) reduced the transcriptional activity of the genes to less than 2% of that of the wild type. When the VAI RNA gene with its element A or B was substituted for the corresponding element A or B of the Xenopus laevis tRNAMet gene, the hybrid genes transcribed close to the level of the wild-type VAI RNA gene and about 10- to 20-fold more efficiently than the tRNAMet gene. Thus, the organization of DNA sequences in the internal promoter of the VAI RNA gene appears to be very similar to that of eucaryotic tRNA genes. This similarity suggests an evolutionary relationship of the VAI RNA gene to tRNA genes.


1984 ◽  
Vol 4 (12) ◽  
pp. 2714-2722
Author(s):  
L Cooley ◽  
J Schaack ◽  
D J Burke ◽  
B Thomas ◽  
D Söll

We determined the sequence of a Drosophila tRNA gene cluster containing a tRNAHis gene and a tRNAHis pseudogene in close proximity on the same DNA strand. The pseudogene contains eight consecutive base pairs different from the region of the bona fide gene which codes for the 3' portion of the anticodon stem of tRNAHis. The tRNAHis gene is transcribed efficiently in Drosophila Kc cell extract, whereas the pseudogene is not. The pseudogene is also a much poorer competitor than the real gene in a stable transcription complex formation assay, even though the sequence alteration in the pseudogene does not affect the sequence or spacing of the putative internal transcription control regions. Recombinant clones were constructed in which the 5'-flanking regions are exchanged. The transcription efficiencies and competitive abilities of the recombinant clones resemble those of the genes from which the 5' flank was derived; for example, the tRNAHis pseudogene with the 5'-flanking sequence of the tRNAHis gene is now efficiently transcribed. Deletion analysis of the pseudogene 5' flank failed to uncover an inhibitory element. Deletion analysis of the real gene showed very high dependence on the presence of the wild-type 5'-flanking sequence for factor binding to the internal control regions and stable complex formation. The 5'-flanking sequence of a Drosophila tRNAArg gene active in the Drosophila Kc cell extract does not restore transcriptional activity or stable complex formation. The tRNAHis gene and pseudogene behave atypically in HeLa cell extract. Both genes compete for HeLa transcription factors, but neither of them is efficiently transcribed. Removal of the 5'-flanking sequences of each gene and replacement with various sequences, including the tRNAArg gene 5' flank, does not allow increased transcription in HeLa cell extract.


1994 ◽  
Vol 14 (9) ◽  
pp. 6171-6179 ◽  
Author(s):  
N R Sturm ◽  
R Kuras ◽  
S Büschlen ◽  
W Sakamoto ◽  
K L Kindle ◽  
...  

FUD6, a nonphotosynthetic mutant of Chlamydomonas reinhardtii, was previously found to be deficient in the synthesis of subunit IV of the cytochrome b6/f complex, the chloroplast petD gene product (C. Lemaire, J. Girard-Bascou, F.-A. Wollman, and P. Bennoun, Biochim. Biophys. Acta 851:229-238, 1986). The lesion in FUD6 is a 236-bp deletion between two 11-bp direct repeats in the chloroplast genome. It extends from 82 to 72 bp upstream of the 5' end of wild-type petD mRNA to 156 to 166 bp downstream of the 5' end. Thus, the deletion extends into the putative promoter and 5' untranslated region of petD. No petD mRNA of the normal size can be detected in FUD6 cells, but a low level of a dicistronic message accumulates, which contains the coding regions for subunit IV and cytochrome f, the product of the upstream petA gene. petD transcriptional activity in FUD6 is not significantly altered from the wild-type level. This transcriptional activity was eliminated by petA promoter disruptions, suggesting that it originates at the petA promoter. We conclude that the petD-coding portion of most cotranscripts is rapidly degraded in FUD6, possibly following processing events that generate the 3' end of petA mRNA. A chloroplast transformant was constructed in which only the sequence from -81 to -2 relative to the major 5' end of the petD transcript was deleted. Although this deletion eliminates all detectable petD promoter activity, the transformant grows phototrophically and accumulates high levels of monocistronic petD mRNA. We conclude that the petD gene can be transcribed by functionally redundant promoters. In the absence of a functional petD promoter, a lack of transcription termination allows the downstream petD gene to be cotranscribed with the petA coding region and thereby expressed efficiently.


1984 ◽  
Vol 4 (12) ◽  
pp. 2714-2722 ◽  
Author(s):  
L Cooley ◽  
J Schaack ◽  
D J Burke ◽  
B Thomas ◽  
D Söll

We determined the sequence of a Drosophila tRNA gene cluster containing a tRNAHis gene and a tRNAHis pseudogene in close proximity on the same DNA strand. The pseudogene contains eight consecutive base pairs different from the region of the bona fide gene which codes for the 3' portion of the anticodon stem of tRNAHis. The tRNAHis gene is transcribed efficiently in Drosophila Kc cell extract, whereas the pseudogene is not. The pseudogene is also a much poorer competitor than the real gene in a stable transcription complex formation assay, even though the sequence alteration in the pseudogene does not affect the sequence or spacing of the putative internal transcription control regions. Recombinant clones were constructed in which the 5'-flanking regions are exchanged. The transcription efficiencies and competitive abilities of the recombinant clones resemble those of the genes from which the 5' flank was derived; for example, the tRNAHis pseudogene with the 5'-flanking sequence of the tRNAHis gene is now efficiently transcribed. Deletion analysis of the pseudogene 5' flank failed to uncover an inhibitory element. Deletion analysis of the real gene showed very high dependence on the presence of the wild-type 5'-flanking sequence for factor binding to the internal control regions and stable complex formation. The 5'-flanking sequence of a Drosophila tRNAArg gene active in the Drosophila Kc cell extract does not restore transcriptional activity or stable complex formation. The tRNAHis gene and pseudogene behave atypically in HeLa cell extract. Both genes compete for HeLa transcription factors, but neither of them is efficiently transcribed. Removal of the 5'-flanking sequences of each gene and replacement with various sequences, including the tRNAArg gene 5' flank, does not allow increased transcription in HeLa cell extract.


1984 ◽  
Vol 4 (11) ◽  
pp. 2556-2563 ◽  
Author(s):  
K K Oishi ◽  
D R Shapiro ◽  
K K Tewari

A gene (PGII), which codes for a 34.5-kilodalton protein, has been isolated and cloned from pea chloroplast DNA. The production of its 1.2-kilobase mRNA is photodependent. The direction of transcription has been determined, the site of initiation of transcription has been found, and an in vitro protein product has been produced. The gene, including the 5' and 3'-flanking regions, has been sequenced. It shows ca. 95% homology to the photosystem II thylakoid membrane protein, photogene 32, from spinach and tobacco. There are no intervening sequences. The 5'-flanking region suggests similarities with Escherichia coli promoters. The 5'-flanking region is remarkably conserved among pea, spinach, and tobacco DNA.


1984 ◽  
Vol 4 (11) ◽  
pp. 2556-2563
Author(s):  
K K Oishi ◽  
D R Shapiro ◽  
K K Tewari

A gene (PGII), which codes for a 34.5-kilodalton protein, has been isolated and cloned from pea chloroplast DNA. The production of its 1.2-kilobase mRNA is photodependent. The direction of transcription has been determined, the site of initiation of transcription has been found, and an in vitro protein product has been produced. The gene, including the 5' and 3'-flanking regions, has been sequenced. It shows ca. 95% homology to the photosystem II thylakoid membrane protein, photogene 32, from spinach and tobacco. There are no intervening sequences. The 5'-flanking region suggests similarities with Escherichia coli promoters. The 5'-flanking region is remarkably conserved among pea, spinach, and tobacco DNA.


2000 ◽  
Vol 182 (12) ◽  
pp. 3508-3516 ◽  
Author(s):  
Erik L. Hendrickson ◽  
Pablo Guevera ◽  
Frederick M. Ausubel

ABSTRACT β-Glucuronidase (uidA) reporter gene fusions were constructed for the hrpZ, hrpL, andhrpS genes from the phytopathogen Pseudomonas syringae pv. maculicola strain ES4326. These reporters, as well as an avrRpt2-uidA fusion, were used to measure transcriptional activity in ES4326 and a ES4326 rpoNmutant. rpoN was required for the expression ofavrRpt2, hrpZ, and hrpL in vitro in minimal media and in vivo when infiltrated into Arabidopsis thaliana leaves. In contrast, the expression of hrpSwas essentially the same in wild-type and rpoN mutant strains. Constitutive expression of hrpL in anrpoN mutant restored hrpZ transcription to wild-type levels, restored the hypersensitive response when infiltrated into tobacco (Nicotiana tobacum), and partially restored the elicitation of virulence-related symptoms but not growth when infiltrated into Arabidopsis leaves. These data indicate that rpoN-mediated control of hrp gene expression acts at the level of hrpL and that in planta growth of P. syringae is not required for the elicitation of disease symptoms.


2019 ◽  
Author(s):  
Sara Althari ◽  
Laeya A. Najmi ◽  
Amanda J. Bennett ◽  
Ingvild Aukrust ◽  
Jana K. Rundle ◽  
...  

SummaryBackgroundExome sequencing in diabetes presents a diagnostic challenge as depending on frequency, functional impact and genomic and environmental contexts, HNF1A variants can cause Maturity-onset Diabetes of the Young (MODY), increase type 2 diabetes risk, or be benign. A correct diagnosis matters as it informs on treatment, progression, and family risk. We describe a multi-dimensional functional dataset of 73 HNF1A missense variants identified in exomes of 12,940 individuals. Our aim was to develop an analytical framework for stratifying variants along the HNF1A phenotypic continuum to facilitate diagnostic interpretation.MethodsHNF1A variant function was determined by 4 different molecular assays. Structure of the multi-dimensional dataset was explored using principal component analysis, k-means, and hierarchical clustering. Weights for tissue-specific isoform expression and functional domain were integrated. Functionally annotated variant subgroups were used to re-evaluate genetic diagnoses in national MODY diagnostic registries.FindingsHNF1A variants demonstrated a range of behaviours across the assays. The structure of the multi-parametric data was shaped primarily by transactivation. Using unsupervised learning methods, we obtained high-resolution functional clusters of the variants which separated known causal MODY variants from benign and type 2 diabetes risk variants and led to reclassification of 4% and 9% of HNF1A variants identified in the UK and Norway MODY diagnostic registries, respectively.InterpretationOur proof-of-principle analyses facilitated informative stratification of HNF1A variants along the continuum, allowing improved evaluation of clinical significance, management and precision medicine in diabetes clinics. Transcriptional activity appears a superior readout supporting pursuit of transactivation-centric experimental designs for high-throughput functional screens.FundingWellcome Trust, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), European Research Council, Norwegian Research Council, Stiftelsen Kristian Gerhard Jebsen, Western Norway Regional Health Authority, Novo Nordisk Fonden, Royal Norwegian Diabetes Foundation.Research in contextEvidence before the studyMolecular characterisation pipelines for studying the function of transcription factors consist primarily of in vitro cellular assays which interrogate transcriptional activity, protein abundance, localisation of the transcription factor to the nucleus, and binding to relevant DNA recognition sequences. The experimental techniques used to explore these mechanisms in vitro vary in robustness and reliability. There exist a wide variety of reported functional consequences of HNF1A variants in the literature, a gene causing the most common form of Maturity-onset Diabetes of the Young (HNF1A-MODY). The standard approach for analysing multi-tiered functional datasets has been to evaluate each functional parameter independently. Data from functional characterisation efforts of the HNF-1A protein encoded by the HNF1A gene, support that the degree of HNF-1A disruption tends to correlate positively with phenotypic severity: MODY-causing protein-altering variants impair HNF-1A transcriptional activity more severely (≤30% vs. wild-type) than HNF1A variants associated with increased risk for developing type 2 diabetes in population-specific contexts (40-60% vs. wild-type). Rare variants which demonstrated intermediate function (between MODY-casual and wild-type) in transactivation and nuclear localisation assays were shown to be associated with a 6-fold increase in type 2 diabetes predisposition.Added value of this studyWe have developed a proof-of-principle analytical framework for robust and unbiased variant stratification using multi-dimensional functional follow-up data from a large number of exome-identified missense variants in HNF1A. Through our analytical approach we were able to perform a comprehensive assessment of molecular function by utilising data from as many mechanistic dimensions as possible, avoiding arbitrarily determined cut-offs based on 1D functional data. Our method facilitated informative spatial organization of variants along the HNF1A molecular-phenotypic spectrum and an exploration of the contributions of each in vitro molecular mechanism on meaningful functional, and therefore clinical, stratification. Further, we were able to perform sensitive mapping of variant effects on molecular function with phenotypic outcome using clinical and genetic data from national MODY diagnostic registries of UK and Norway. This effort allowed us to annotate functional clusters with clinical knowledge and identify discordant classifications between functional genotype and clinical phenotype.Implications of all the available evidenceOur novel approach towards analysing large functional datasets enables sensitive variant-phenotype mapping and multi-layered variant annotation. It also assists in prioritisation of functional elements and signatures for Multiplexed Assays of Variant Effects (MAVEs) whilst they largely remain limited to a single functional readout. Indeed, comprehensively annotated HNF1A variant clusters can aid in the interpretation and clinical classification of variants, and can also be utilised to calibrate supervised variant classification models built with high-throughput-derived experimental data.


Sign in / Sign up

Export Citation Format

Share Document