RNA processing and expression of an intron-encoded protein in yeast mitochondria: role of a conserved dodecamer sequence

1987 ◽  
Vol 7 (7) ◽  
pp. 2530-2537 ◽  
Author(s):  
H Zhu ◽  
I G Macreadie ◽  
R A Butow

The 3' ends of most Saccharomyces cerevisiae mitochondrial mRNAs terminate at a conserved dodecamer sequence, 5'-AAUAAUAUUCUU-3', of unknown function. We have studied the consequences of mutations within a dodecamer found in an 1,143-base-pair optional intron of the mitochondrial large (21S) rRNA gene on RNA processing. The dodecamer is situated at the 3' end of an expressed open reading frame (ORF) within that intron, and the mutations are two adjacent transversions that extend the intron ORF by 51 nucleotides. The strain harboring these mutations, L5-10-1, is defective in biased intron transmission in crosses to strains that lack the intron, as are other mutants which contain nucleotide changes within the ORF (I. G. Macreadie, R. M. Scott, A. R. Zinn, and R. A. Butow, Cell 41:395-402, 1985). However, unlike these other mutants, wild-type strains, or petites which retain the intron allele, L5-10-1 is defective in processing at the intron dodecamer. In addition, L5-10-1 lacks a prominent 2.7-kilobase RNA containing both intron and exon sequences and at least two of four RNAs that correspond to various forms of the excised intron. We propose that these RNAs, missing in L5-10-1 but present in all other strains examined, arise in part by processing at the intron dodecamer. In addition, in all strains examined, we have detected a novel processing activity in which precursor 21S rRNA transcripts are cleaved in the upstream exon, about 1,500 nucleotides from the 5' end of the RNA. This activity, together with 3' intron dodecamer cleavage, probably accounts for the 2.7-kilobase RNA species, a candidate for the mRNA for the intron-encoded protein.

1987 ◽  
Vol 7 (7) ◽  
pp. 2530-2537 ◽  
Author(s):  
H Zhu ◽  
I G Macreadie ◽  
R A Butow

The 3' ends of most Saccharomyces cerevisiae mitochondrial mRNAs terminate at a conserved dodecamer sequence, 5'-AAUAAUAUUCUU-3', of unknown function. We have studied the consequences of mutations within a dodecamer found in an 1,143-base-pair optional intron of the mitochondrial large (21S) rRNA gene on RNA processing. The dodecamer is situated at the 3' end of an expressed open reading frame (ORF) within that intron, and the mutations are two adjacent transversions that extend the intron ORF by 51 nucleotides. The strain harboring these mutations, L5-10-1, is defective in biased intron transmission in crosses to strains that lack the intron, as are other mutants which contain nucleotide changes within the ORF (I. G. Macreadie, R. M. Scott, A. R. Zinn, and R. A. Butow, Cell 41:395-402, 1985). However, unlike these other mutants, wild-type strains, or petites which retain the intron allele, L5-10-1 is defective in processing at the intron dodecamer. In addition, L5-10-1 lacks a prominent 2.7-kilobase RNA containing both intron and exon sequences and at least two of four RNAs that correspond to various forms of the excised intron. We propose that these RNAs, missing in L5-10-1 but present in all other strains examined, arise in part by processing at the intron dodecamer. In addition, in all strains examined, we have detected a novel processing activity in which precursor 21S rRNA transcripts are cleaved in the upstream exon, about 1,500 nucleotides from the 5' end of the RNA. This activity, together with 3' intron dodecamer cleavage, probably accounts for the 2.7-kilobase RNA species, a candidate for the mRNA for the intron-encoded protein.


1989 ◽  
Vol 9 (4) ◽  
pp. 1507-1512 ◽  
Author(s):  
H Zhu ◽  
H Conrad-Webb ◽  
X S Liao ◽  
P S Perlman ◽  
R A Butow

All mRNAs of yeast mitochondria are processed at their 3' ends within a conserved dodecamer sequence, 5'-AAUAAUAUUCUU-3'. A dominant nuclear suppressor, SUV3-I, was previously isolated because it suppresses a dodecamer deletion at the 3' end of the var1 gene. We have tested the effects of SUV3-1 on a mutant containing two adjacent transversions within a dodecamer at the 3' end of fit1, a gene located within the 1,143-base-pair intron of the 21S rRNA gene, whose product is a site-specific endonuclease required in crosses for the quantitative transmission of that intron to 21S alleles that lack it. The fit1 dodecamer mutations blocked both intron transmission and dodecamer cleavage, neither of which was suppressed by SUV3-1 when present in heterozygous or homozygous configurations. Unexpectedly, we found that SUV3-1 completely blocked cleavage of the wild-type fit1 dodecamer and, in SUV3-1 homozygous crosses, intron conversion. In addition, SUV3-1 resulted in at least a 40-fold increase in the amount of excised intron accumulated. Genetic analysis showed that these phenotypes resulted from the same mutation. We conclude that cleavage of a wild-type dodecamer sequence at the 3' end of the fit1 gene is essential for fit1 expression.


Genome ◽  
1989 ◽  
Vol 31 (2) ◽  
pp. 757-760 ◽  
Author(s):  
Ronald A. Butow ◽  
Hong Zhu ◽  
Philip Perlman ◽  
Heather Conrad-Webb

All mRNAs on the yeast mitochondrial genome terminate at a conserved dodecamer sequence 5′-AAUAAUAUUCUU-3′. We have characterized two mutants with altered dodecamers. One contains a deletion of the dodecamer at the end of the var1 gene, and the other contains two adjacent transversions in the dodecamer at the end of the reading frame of fit1, a gene within the ω+ allele of the 21S rRNA gene. In each mutant, expression of the respective gene is blocked completely. A dominant nuclear suppressor, SUV3-1, was isolated that suppresses the var1 deletion but is without effect on the fit1 dodecamer mutations. Unexpectedly, however, we found that SUV3-1 blocks expression of the wild-type fit1 allele by blocking processing at its dodecamer. SUV3-1 has pleiotropic effects on mitochondrial gene expression, affecting RNA processing, RNA stability, and translation. Our results suggest that RNA metabolism and translation may be part of a multicomponent complex within mitochondria.Key words: mitochondria, yeast, mRNA, RNA processing, 3′ dodecamer.


1989 ◽  
Vol 9 (4) ◽  
pp. 1507-1512
Author(s):  
H Zhu ◽  
H Conrad-Webb ◽  
X S Liao ◽  
P S Perlman ◽  
R A Butow

All mRNAs of yeast mitochondria are processed at their 3' ends within a conserved dodecamer sequence, 5'-AAUAAUAUUCUU-3'. A dominant nuclear suppressor, SUV3-I, was previously isolated because it suppresses a dodecamer deletion at the 3' end of the var1 gene. We have tested the effects of SUV3-1 on a mutant containing two adjacent transversions within a dodecamer at the 3' end of fit1, a gene located within the 1,143-base-pair intron of the 21S rRNA gene, whose product is a site-specific endonuclease required in crosses for the quantitative transmission of that intron to 21S alleles that lack it. The fit1 dodecamer mutations blocked both intron transmission and dodecamer cleavage, neither of which was suppressed by SUV3-1 when present in heterozygous or homozygous configurations. Unexpectedly, we found that SUV3-1 completely blocked cleavage of the wild-type fit1 dodecamer and, in SUV3-1 homozygous crosses, intron conversion. In addition, SUV3-1 resulted in at least a 40-fold increase in the amount of excised intron accumulated. Genetic analysis showed that these phenotypes resulted from the same mutation. We conclude that cleavage of a wild-type dodecamer sequence at the 3' end of the fit1 gene is essential for fit1 expression.


Genetics ◽  
2001 ◽  
Vol 158 (3) ◽  
pp. 1027-1036 ◽  
Author(s):  
Cletus A D'Souza ◽  
Bee Na Lee ◽  
Thomas H Adams

Abstract We showed previously that a ΔfluG mutation results in a block in Aspergillus nidulans asexual sporulation and that overexpression of fluG activates sporulation in liquid-submerged culture, a condition that does not normally support sporulation of wild-type strains. Here we demonstrate that the entire N-terminal region of FluG (∼400 amino acids) can be deleted without affecting sporulation, indicating that FluG activity resides in the C-terminal half of the protein, which bears significant similarity with GSI-type glutamine synthetases. While FluG has no apparent role in glutamine biosynthesis, we propose that it has an enzymatic role in sporulation factor production. We also describe the isolation of dominant suppressors of ΔfluG(dsg) that should identify components acting downstream of FluG and thereby define the function of FluG in sporulation. The dsgA1 mutation also suppresses the developmental defects resulting from ΔflbA and dominant activating fadA mutations, which both cause constitutive induction of the mycelial proliferation pathway. However, dsgA1 does not suppress the negative influence of these mutations on production of the aflatoxin precursor, sterigmatocystin, indicating that dsgA1 is specific for asexual development. Taken together, our studies define dsgA as a novel component of the asexual sporulation pathway.


2013 ◽  
Vol 57 (11) ◽  
pp. 5658-5664 ◽  
Author(s):  
Soo-Jin Yang ◽  
Nagendra N. Mishra ◽  
Aileen Rubio ◽  
Arnold S. Bayer

ABSTRACTSingle nucleotide polymorphisms (SNPs) within themprFopen reading frame (ORF) have been commonly observed in daptomycin-resistant (DAPr)Staphylococcus aureusstrains. Such SNPs are usually associated with a gain-in-function phenotype, in terms of either increased synthesis or enhanced translocation (flipping) of lysyl-phosphatidylglycerol (L-PG). However, it is unclear if suchmprFSNPs are causal in DAPrstrains or are merely a biomarker for this phenotype. In this study, we used an isogenic set ofS. aureusstrains: (i) Newman, (ii) its isogenic ΔmprFmutant, and (iii) several intransplasmid complementation constructs, expressing either a wild-type or point-mutated form of themprFORF cloned from two isogenic DAP-susceptible (DAPs)-DAPrstrain pairs (616-701 and MRSA11/11-REF2145). Complementation of the ΔmprFstrain with singly point-mutatedmprFgenes (mprFS295LormprFT345A) revealed that (i) individual and distinct point mutations within themprFORF can recapitulate phenotypes observed in donor strains (i.e., changes in DAP MICs, positive surface charge, and cell membrane phospholipid profiles) and (ii) these gain-in-function SNPs (i.e., enhanced L-PG synthesis) likely promote reduced DAP binding toS. aureusby a charge repulsion mechanism. Thus, for these two DAPrstrains, the definedmprFSNPs appear to be causally related to this phenotype.


2019 ◽  
Vol 32 (7) ◽  
pp. 865-875 ◽  
Author(s):  
Kegui Chen ◽  
Behnam Khatabi ◽  
Vincent N. Fondong

Geminiviruses (family Geminiviridae) are among the most devastating plant viruses worldwide, causing severe damage in crops of economic and subsistence importance. These viruses have very compact genomes and many of the encoded proteins are multifunctional. Here, we investigated the role of the East African cassava mosaic Cameroon virus (EACMCV) AC4 on virus infectivity in Nicotiana benthamiana. Results showed that plants inoculated with EACMCV containing a knockout mutation in an AC4 open reading frame displayed symptoms 2 to 3 days later than plants inoculated with wild-type virus, and these plants recovered from infection, whereas plants inoculated with the wild-type virus did not. Curiously, when an additional mutation was made in the knockout mutant, the resulting double mutant virus completely failed to cause any apparent symptoms. Interestingly, the role of AC4 on virus infectivity appeared to be dependent on an encoded N-myristoylation motif that mediates cell membrane binding. We previously showed that EACMCV containing the AC4T38I mutant produced virus progeny characterized by second-site mutations and reversion to wild-type virus. These results were confirmed in this study using additional mutations. Together, these results show involvement of EACMCV AC4 in virus infectivity; they also suggest a role for the combined action of mutation and selection, under prevailing environmental conditions, on begomovirus genetic variation and diversity.


2020 ◽  
Author(s):  
Rajani Kanth Gudipati ◽  
Kathrin Braun ◽  
Foivos Gypas ◽  
Daniel Hess ◽  
Jan Schreier ◽  
...  

SummarySmall RNA pathways defend the germlines of animals against selfish genetic elements and help to maintain genomic integrity. At the same time, their activity needs to be well-controlled to prevent silencing of ‘self’ genes. Here, we reveal a proteolytic mechanism that controls endogenous small interfering (22G) RNA activity in the Caenorhabditis elegans germline to protect genome integrity and maintain fertility. We find that WAGO-1 and WAGO-3 Argonaute (Ago) proteins are matured through proteolytic processing of their unusually proline-rich N-termini. In the absence of DPF-3, a P-granule-localized N-terminal dipeptidase orthologous to mammalian DPP8/9, processing fails, causing a change of identity of 22G RNAs bound to these WAGO proteins. Desilencing of repeat- and transposon-derived transcripts, DNA damage and acute sterility ensue. These phenotypes are recapitulated when WAGO-1 and WAGO-3 are rendered resistant to DFP-3-mediated processing, identifying them as critical substrates of DPF-3. We conclude that N-terminal processing of Ago proteins regulates their activity and promotes discrimination of self from non-self by ensuring association with the proper complement of small RNAs.Graphical Abstract: The role of DPF-3 in the fertility of the animalsIn wild type animals, the WAGO-1 and WAGO-3 Argonaute proteins are produced as immature pro-proteins with N-termini (N) that are unusually rich in prolines (P). N-terminal processing by DPF-3 is required for loading of the proper small RNA cargo and stabilization of WAGO-3. Accordingly, loss of this processing activity causes desilencing of transposable elements (TE), cell death and sterility.


2007 ◽  
Vol 189 (24) ◽  
pp. 9076-9081 ◽  
Author(s):  
Ludmila Chistoserdova ◽  
Gregory J. Crowther ◽  
Julia A. Vorholt ◽  
Elizabeth Skovran ◽  
Jean-Charles Portais ◽  
...  

ABSTRACT A mutant of Methylobacterium extorquens AM1 with lesions in genes for three formate dehydrogenase (FDH) enzymes was previously described by us (L. Chistoserdova, M. Laukel, J.-C. Portais, J. A. Vorholt, and M. E. Lidstrom, J. Bacteriol. 186:22-28, 2004). This mutant had lost its ability to grow on formate but still maintained the ability to grow on methanol. In this work, we further investigated the phenotype of this mutant. Nuclear magnetic resonance experiments with [13C]formate, as well as 14C-labeling experiments, demonstrated production of labeled CO2 in the mutant, pointing to the presence of an additional enzyme or a pathway for formate oxidation. The tungsten-sensitive phenotype of the mutant suggested the involvement of a molybdenum-dependent enzyme. Whole-genome array experiments were conducted to test for genes overexpressed in the triple-FDH mutant compared to the wild type, and a gene (fdh4A) was identified whose translated product carried similarity to an uncharacterized putative molybdopterin-binding oxidoreductase-like protein sharing relatively low similarity with known formate dehydrogenase alpha subunits. Mutation of this gene in the triple-FDH mutant background resulted in a methanol-negative phenotype. When the gene was deleted in the wild-type background, the mutant revealed diminished growth on methanol with accumulation of high levels of formate in the medium, pointing to an important role of FDH4 in methanol metabolism. The identity of FDH4 as a novel FDH was also confirmed by labeling experiments that revealed strongly reduced CO2 formation in growing cultures. Mutation of a small open reading frame (fdh4B) downstream of fdh4A resulted in mutant phenotypes similar to the phenotypes of fdh4A mutants, suggesting that fdh4B is also involved in formate oxidation.


2013 ◽  
Vol 79 (13) ◽  
pp. 3967-3973 ◽  
Author(s):  
Shannon M. Hinsa-Leasure ◽  
Cassandra Koid ◽  
James M. Tiedje ◽  
Janna N. Schultzhaus

ABSTRACTPsychrobacter arcticusstrain 273-4, an isolate from a Siberian permafrost core, is capable of forming biofilms when grown in minimal medium under laboratory conditions. Biofilms form at 4 to 22°C when acetate is supplied as the lone carbon source and with 1 to 7% sea salt.P. arcticusis also capable of colonizing quartz sand. Transposon mutagenesis identified a gene important for biofilm formation byP. arcticus. Four transposon mutants were mapped to a 20.1-kbp gene, which is predicted to encode a protein of 6,715 amino acids (Psyc_1601). We refer to this open reading frame ascat1, for cold attachment gene 1. Thecat1mutants are unable to form biofilms at levels equivalent to that of the wild type, and there is no impact on the planktonic growth characteristics of the strains, indicating a specific role in biofilm formation. Through time course studies of the static microtiter plate assay, we determined thatcat1mutants are unable to form biofilms equivalent to that of the wild type under all conditions tested. In flow cell experiments,cat1mutants initially are unable to attach to the surface. Over time, however, they form microcolonies, an architecture very different from that produced by wild-type biofilms. Our results demonstrate that Cat1 is involved in the initial stages of bacterial attachment to surfaces.


Sign in / Sign up

Export Citation Format

Share Document