Biofilm Formation by Psychrobacter arcticus and the Role of a Large Adhesin in Attachment to Surfaces
ABSTRACTPsychrobacter arcticusstrain 273-4, an isolate from a Siberian permafrost core, is capable of forming biofilms when grown in minimal medium under laboratory conditions. Biofilms form at 4 to 22°C when acetate is supplied as the lone carbon source and with 1 to 7% sea salt.P. arcticusis also capable of colonizing quartz sand. Transposon mutagenesis identified a gene important for biofilm formation byP. arcticus. Four transposon mutants were mapped to a 20.1-kbp gene, which is predicted to encode a protein of 6,715 amino acids (Psyc_1601). We refer to this open reading frame ascat1, for cold attachment gene 1. Thecat1mutants are unable to form biofilms at levels equivalent to that of the wild type, and there is no impact on the planktonic growth characteristics of the strains, indicating a specific role in biofilm formation. Through time course studies of the static microtiter plate assay, we determined thatcat1mutants are unable to form biofilms equivalent to that of the wild type under all conditions tested. In flow cell experiments,cat1mutants initially are unable to attach to the surface. Over time, however, they form microcolonies, an architecture very different from that produced by wild-type biofilms. Our results demonstrate that Cat1 is involved in the initial stages of bacterial attachment to surfaces.