Role of the promoter in the regulation of the thymidine kinase gene

1988 ◽  
Vol 8 (4) ◽  
pp. 1551-1557
Author(s):  
S Travali ◽  
K E Lipson ◽  
D Jaskulski ◽  
E Lauret ◽  
R Baserga

To identify the regulatory elements of the human thymidine kinase (TK) gene, we have established stable cell lines carrying different chimeric constructs of the TK gene. Our results can be summarized as follows. (i) When the TK coding sequence is under the control of the calcyclin promoter (a promoter that is activated when G0 cells are stimulated by growth factors), TK mRNA levels are higher in G1-arrested cells than in proliferating cells; (ii) when the TK coding sequence is under the control of the promoter of heat shock protein HSP70, steady-state levels of TK mRNA are highest after heat shock, regardless of the position of the cells in the cell cycle; (iii) the bacterial CAT gene under the control of the human TK promoter is maximally expressed in the S phase; (iv) the TK cDNA driven by the simian virus 40 promoter is also maximally expressed in the S phase; and (v) TK enzyme activity is always at a maximum in the S phase, even when the levels of TK mRNA are highest in nonproliferating cells. We conclude that although the TK coding sequence may also play some role, the TK promoter has an important role in the cell cycle regulation of TK mRNA levels.

1988 ◽  
Vol 8 (4) ◽  
pp. 1551-1557 ◽  
Author(s):  
S Travali ◽  
K E Lipson ◽  
D Jaskulski ◽  
E Lauret ◽  
R Baserga

To identify the regulatory elements of the human thymidine kinase (TK) gene, we have established stable cell lines carrying different chimeric constructs of the TK gene. Our results can be summarized as follows. (i) When the TK coding sequence is under the control of the calcyclin promoter (a promoter that is activated when G0 cells are stimulated by growth factors), TK mRNA levels are higher in G1-arrested cells than in proliferating cells; (ii) when the TK coding sequence is under the control of the promoter of heat shock protein HSP70, steady-state levels of TK mRNA are highest after heat shock, regardless of the position of the cells in the cell cycle; (iii) the bacterial CAT gene under the control of the human TK promoter is maximally expressed in the S phase; (iv) the TK cDNA driven by the simian virus 40 promoter is also maximally expressed in the S phase; and (v) TK enzyme activity is always at a maximum in the S phase, even when the levels of TK mRNA are highest in nonproliferating cells. We conclude that although the TK coding sequence may also play some role, the TK promoter has an important role in the cell cycle regulation of TK mRNA levels.


1987 ◽  
Vol 7 (3) ◽  
pp. 1156-1163 ◽  
Author(s):  
C J Stewart ◽  
M Ito ◽  
S E Conrad

We have studied the cell cycle-regulated expression of the thymidine kinase (TK) gene in mammalian tissue culture cells. TK mRNA and enzyme levels are low in resting, G0-phase cells, but increase dramatically (10- to 20-fold) during the S phase in both serum-stimulated and simian virus 40-infected cells. To determine whether an increase in the rate of TK gene transcription is responsible for this induction, nuclear run-on transcription assays were performed at various times after serum stimulation or simian virus 40 infection of growth-arrested simian CV1 cells. When assays were performed at 12-h intervals, a small (two- to threefold) but reproducible increase in TK transcription was detected during the S phase. When time points were chosen to span the G1-S interface a larger (six- to sevenfold) increase in transcriptional activity was observed in serum-stimulated cells but not in simian virus 40-infected cells. The large increase in TK mRNA levels and the relatively small increase in transcription rates in growth-stimulated cells suggest that TK gene expression is controlled at both a transcriptional and post-transcriptional level during the mammalian cell cycle. To identify the DNA sequences required for cell cycle-regulated expression, several TK cDNA clones were transfected into Rat-3 TK- cells, and their expression was examined in resting and serum-stimulated cultures. These experiments indicated that the body of the TK cDNA is sufficient to insure cell cycle-regulated expression regardless of the promoter or polyadenylation signal used.


1987 ◽  
Vol 7 (3) ◽  
pp. 1156-1163
Author(s):  
C J Stewart ◽  
M Ito ◽  
S E Conrad

We have studied the cell cycle-regulated expression of the thymidine kinase (TK) gene in mammalian tissue culture cells. TK mRNA and enzyme levels are low in resting, G0-phase cells, but increase dramatically (10- to 20-fold) during the S phase in both serum-stimulated and simian virus 40-infected cells. To determine whether an increase in the rate of TK gene transcription is responsible for this induction, nuclear run-on transcription assays were performed at various times after serum stimulation or simian virus 40 infection of growth-arrested simian CV1 cells. When assays were performed at 12-h intervals, a small (two- to threefold) but reproducible increase in TK transcription was detected during the S phase. When time points were chosen to span the G1-S interface a larger (six- to sevenfold) increase in transcriptional activity was observed in serum-stimulated cells but not in simian virus 40-infected cells. The large increase in TK mRNA levels and the relatively small increase in transcription rates in growth-stimulated cells suggest that TK gene expression is controlled at both a transcriptional and post-transcriptional level during the mammalian cell cycle. To identify the DNA sequences required for cell cycle-regulated expression, several TK cDNA clones were transfected into Rat-3 TK- cells, and their expression was examined in resting and serum-stimulated cultures. These experiments indicated that the body of the TK cDNA is sufficient to insure cell cycle-regulated expression regardless of the promoter or polyadenylation signal used.


1996 ◽  
Vol 16 (4) ◽  
pp. 1500-1508 ◽  
Author(s):  
P C Goswami ◽  
J L Roti Roti ◽  
C R Hunt

Topoisomerase II is a multifunctional protein required during DNA replication, chromosome disjunction at mitosis, and other DNA-related activities by virtue of its ability to alter DNA supercoiling. The enzyme is encoded by two similar but nonidentical genes: the topoisomerase IIalpha and IIbeta genes. In HeLa cells synchronized by mitotic shake-off, topoisomeraseII alpha mRNA levels were found to vary as a function of cell cycle position, being 15-fold higher in late S phase (14 to 18 h postmitosis) than during G1 phase. Also detected was a corresponding increase in topoisomerase IIalpha protein synthesis at 14 to 18 h postmitosis which resulted in significantly higher accumulation of the protein during S and G2 phases. Topoisomerase IIalpha expression was not dependent on DNA synthesis during S phase, which could be inhibited without effect on the timing or level of mRNA expression. Mechanistically, topoisomerase IIalpha expression appears to be coupled to cell cycle position mainly through associated changes in mRNA stability. When cells are in S phase and mRNA levels are maximal, the half-life of topoisomerase IIalpha mRNA was determined to be approximately 30 min. A similar decrease in mRNA stability was also induced by two external factors known to delay cell cycle progression. Treatment of S-phase cells, at the time of maximum topoisomerase IIalpha mRNA stability, with either ionizing radiation (5 Gy) or heat shock (45 degrees C for 15 min) caused the accumulated topoisomerase IIalpha mRNA to decay. This finding suggests a potential relationship between stress-induced decreases in topoisomerase IIalpha expression and cell cycle progression delays in late S/G2.


1988 ◽  
Vol 8 (12) ◽  
pp. 5280-5291
Author(s):  
H B Lieberman ◽  
P F Lin ◽  
D B Yeh ◽  
F H Ruddle

We previously isolated and characterized the structure of murine thymidine kinase (tk) genomic and cDNA sequences to begin a study designed to identify regions of the tk gene important for regulated expression during the transition of cells from G0 to a proliferating state. In this report, we describe the stable transfection of the cloned gene into L-M(TK-) cells and show that both thymidine kinase (TK) enzyme activity and DNA synthesis increase in parallel when transfectants in G0 arrest are stimulated by serum. To define promoter and regulatory regions more precisely, we have constructed a series of tk minigenes and have examined their expression in stable transfectants after serum stimulation. We have identified a 291-base-pair DNA fragment at the 5' end of the tk gene that has promoter function, and we have determined its sequence. In addition, we have found that DNA sequences which mediate serum-induced expression of TK are transcribed, since expression of the murine tk cDNA, fused to a promoter from either the murine tk gene, the simian virus 40 early region, or the herpes simplex virus tk gene, is stimulated by serum. Our constructs also reveal that the murine tk polyadenylation signal is not required for regulation, nor is most of the 3' untranslated region. RNA dot blot analysis indicates that murine cytoplasmic tk mRNA levels always parallel TK enzyme activity. Nuclear runon transcription assays show less than a 2-fold increase in transcription from the cloned tk gene in serum-stimulated transfectants, but an 11-fold increase in mouse L929 cells, which are inherently TK+. These results taken together suggest that the murine tk gene is controlled in serum-stimulated cells by a transcriptional mechanism influenced by DNA sequences that flank tk and also by a posttranscriptional system linked to gene sequences that are transcribed.


1991 ◽  
Vol 11 (4) ◽  
pp. 2296-2302 ◽  
Author(s):  
Y K Kim ◽  
A S Lee

The promoter of the human thymidine kinase gene contains cis-regulatory elements responsible for its cell-cycle-regulated expression. We report here that a 70-bp region between -133 and -64 is sufficient to confer cell cycle regulation on a heterologous promoter. The 20-bp region between -64 and -83, which contains an inverted CCAAT motif, is important for transcriptional stimulation of this functional unit. The sequence of this CCAAT motif is nearly identical to the consensus sequence for the transcriptional factor CP1. We also examined the specificity and binding activities of cellular factors interacting with the 70-bp fragment. We showed that the cellular factors binding to the 70-bp region are similar during the G1, S, and G2 phases, suggesting that the cell cycle regulatory activity observed must involve processes other than factor binding to the DNA.


1991 ◽  
Vol 11 (4) ◽  
pp. 2296-2302
Author(s):  
Y K Kim ◽  
A S Lee

The promoter of the human thymidine kinase gene contains cis-regulatory elements responsible for its cell-cycle-regulated expression. We report here that a 70-bp region between -133 and -64 is sufficient to confer cell cycle regulation on a heterologous promoter. The 20-bp region between -64 and -83, which contains an inverted CCAAT motif, is important for transcriptional stimulation of this functional unit. The sequence of this CCAAT motif is nearly identical to the consensus sequence for the transcriptional factor CP1. We also examined the specificity and binding activities of cellular factors interacting with the 70-bp fragment. We showed that the cellular factors binding to the 70-bp region are similar during the G1, S, and G2 phases, suggesting that the cell cycle regulatory activity observed must involve processes other than factor binding to the DNA.


1988 ◽  
Vol 8 (12) ◽  
pp. 5280-5291 ◽  
Author(s):  
H B Lieberman ◽  
P F Lin ◽  
D B Yeh ◽  
F H Ruddle

We previously isolated and characterized the structure of murine thymidine kinase (tk) genomic and cDNA sequences to begin a study designed to identify regions of the tk gene important for regulated expression during the transition of cells from G0 to a proliferating state. In this report, we describe the stable transfection of the cloned gene into L-M(TK-) cells and show that both thymidine kinase (TK) enzyme activity and DNA synthesis increase in parallel when transfectants in G0 arrest are stimulated by serum. To define promoter and regulatory regions more precisely, we have constructed a series of tk minigenes and have examined their expression in stable transfectants after serum stimulation. We have identified a 291-base-pair DNA fragment at the 5' end of the tk gene that has promoter function, and we have determined its sequence. In addition, we have found that DNA sequences which mediate serum-induced expression of TK are transcribed, since expression of the murine tk cDNA, fused to a promoter from either the murine tk gene, the simian virus 40 early region, or the herpes simplex virus tk gene, is stimulated by serum. Our constructs also reveal that the murine tk polyadenylation signal is not required for regulation, nor is most of the 3' untranslated region. RNA dot blot analysis indicates that murine cytoplasmic tk mRNA levels always parallel TK enzyme activity. Nuclear runon transcription assays show less than a 2-fold increase in transcription from the cloned tk gene in serum-stimulated transfectants, but an 11-fold increase in mouse L929 cells, which are inherently TK+. These results taken together suggest that the murine tk gene is controlled in serum-stimulated cells by a transcriptional mechanism influenced by DNA sequences that flank tk and also by a posttranscriptional system linked to gene sequences that are transcribed.


1994 ◽  
Vol 12 (1) ◽  
pp. 107-118 ◽  
Author(s):  
A Van Bael ◽  
R Huygen ◽  
B Himpens ◽  
C Denef

ABSTRACT We have studied the effect of LHRH and neuropeptide Y (NPY) on prolactin (PRL) mRNA levels in pituitary reaggregate cell cultures from 14-day-old female rats, by means of in situ hybridization and Northern blot analysis. As estimated by computer-image analysis, addition of LHRH on day 5 in culture for 40 h resulted in a 37% increase in the total cytoplasmic areas of cells containing PRL mRNA, visualized using a digoxigenin-labelled PRL cRNA. The size of individual PRL-expressing cells was not influenced, nor was the content of PRL mRNA per cell. A similar effect of LHRH was found by dot blot hybridization of extracted RNA. PRL mRNA levels were not affected by NPY. LHRH induced a 29% increase in the number of PRL mRNA-expressing cells processing through the S phase of the cell cycle, visualized by the incorporation of [3H]thymidine ([3H]T) into DNA over 16 h. The fraction of [3H]T-labelled cells was 10–12% of the total cell population. NPY did not influence the number of [3H]T-positive cells expressing PRL mRNA, but completely blocked the effect of LHRH on the latter population. The present data suggest that LHRH, probably via a paracrine action of gonadotrophs, stimulates the recruitment of new lactotrophs, an action which is negatively modulated by NPY. Since the magnitude of this effect was the same in the total pituitary cell population as in cells processing through the S phase of the cell cycle and presumably mitosis, recruitment of lactotrophs seems to be based on differentiation of progenitor or immature cells into PRL-expressing cells, rather than on a mitogenic action on pre-existing lactotrophs alone.


1989 ◽  
Vol 9 (5) ◽  
pp. 1940-1945 ◽  
Author(s):  
B Y Tseng ◽  
C E Prussak ◽  
M T Almazan

Expression of the small-subunit p49 mRNA of primase, the enzyme that synthesizes oligoribonucleotides for initiation of DNA replication, was examined in mouse cells stimulated to proliferate by serum and in growing cells. The level of p49 mRNA increased approximately 10-fold after serum stimulation and preceded synthesis of DNA and histone H3 mRNA by several hours. Expression of p49 mRNA was not sensitive to inhibition by low concentrations of cycloheximide, which suggested that the increase in mRNA occurred before the restriction point control for cell cycle progression described for mammalian cells and was not under its control. p49 mRNA levels were not coupled to DNA synthesis, as observed for the replication-dependent histone genes, since hydroxyurea or aphidicolin had no effect on p49 mRNA levels when added before or during S phase. These inhibitors did have an effect, however, on the stability of p49 mRNA and increased the half-life from 3.5 h to about 20 h, which suggested an interdependence of p49 mRNA degradation and DNA synthesis. When growing cells were examined after separation by centrifugal elutriation, little difference was detected for p49 mRNA levels in different phases of the cell cycle. This was also observed when elutriated G1 cells were allowed to continue growth and then were blocked in M phase with colcemid. Only a small decrease in p49 mRNA occurred, whereas H3 mRNA rapidly decreased, when cells entered G2/M. These results indicate that the level of primase p49 mRNA is not cell cycle regulated but is present constitutively in proliferating cells.


Sign in / Sign up

Export Citation Format

Share Document