scholarly journals The general control activator protein GCN4 is essential for a basal level of ARO3 gene expression in Saccharomyces cerevisiae.

1989 ◽  
Vol 9 (1) ◽  
pp. 144-151 ◽  
Author(s):  
G Paravicini ◽  
H U Mösch ◽  
T Schmidheini ◽  
G Braus

The ARO3 gene encodes one of two 3-deoxy-D-arabino-heptulosonate-7-phosphate isoenzymes in Saccharomyces cerevisiae catalyzing the first step in the biosynthesis of aromatic amino acids. The ARO3-encoded 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (EC 4.1.2.15) is feedback inhibited by phenylalanine; its isoenzyme, the ARO4 gene product, is inhibited by tyrosine. Both genes ARO3 and ARO4 are strongly regulated under the general control regulatory system. Cells carrying only one intact isogene are phenotypically indistinguishable from a wild-type strain when grown on minimal medium. The complete functional ARO3 promoter comprises 231 base pairs and contains only one TGACTA binding site for the general control activator protein GCN4. Mutating this element to TTACTA inhibits binding of GCN4 and results in a decreased basal level of ARO3 gene product and slow growth of a strain defective in its isogene ARO4. In addition, ARO3 gene expression cannot be elevated under amino acid starvation conditions. An ARO3 aro4 strain with gcn4 genetic background has the same phenotype of low ARO3 gene expression and slow growth. The amount of GCN4 protein present in repressed wild-type cells therefore seems to contribute to a basal level of ARO3 gene expression. The general control activator GCN4 has thus two functions: (i) to maintain a basal level of ARO3 transcription (basal control) in the presence of amino acids and (ii) to derepress the ARO3 gene to a higher transcription rate under amino acid starvation (general control).

1989 ◽  
Vol 9 (1) ◽  
pp. 144-151
Author(s):  
G Paravicini ◽  
H U Mösch ◽  
T Schmidheini ◽  
G Braus

The ARO3 gene encodes one of two 3-deoxy-D-arabino-heptulosonate-7-phosphate isoenzymes in Saccharomyces cerevisiae catalyzing the first step in the biosynthesis of aromatic amino acids. The ARO3-encoded 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (EC 4.1.2.15) is feedback inhibited by phenylalanine; its isoenzyme, the ARO4 gene product, is inhibited by tyrosine. Both genes ARO3 and ARO4 are strongly regulated under the general control regulatory system. Cells carrying only one intact isogene are phenotypically indistinguishable from a wild-type strain when grown on minimal medium. The complete functional ARO3 promoter comprises 231 base pairs and contains only one TGACTA binding site for the general control activator protein GCN4. Mutating this element to TTACTA inhibits binding of GCN4 and results in a decreased basal level of ARO3 gene product and slow growth of a strain defective in its isogene ARO4. In addition, ARO3 gene expression cannot be elevated under amino acid starvation conditions. An ARO3 aro4 strain with gcn4 genetic background has the same phenotype of low ARO3 gene expression and slow growth. The amount of GCN4 protein present in repressed wild-type cells therefore seems to contribute to a basal level of ARO3 gene expression. The general control activator GCN4 has thus two functions: (i) to maintain a basal level of ARO3 transcription (basal control) in the presence of amino acids and (ii) to derepress the ARO3 gene to a higher transcription rate under amino acid starvation (general control).


1992 ◽  
Vol 12 (5) ◽  
pp. 2154-2164 ◽  
Author(s):  
D J DeMarini ◽  
M Winey ◽  
D Ursic ◽  
F Webb ◽  
M R Culbertson

The SEN1 gene, which is essential for growth in the yeast Saccharomyces cerevisiae, is required for endonucleolytic cleavage of introns from all 10 families of precursor tRNAs. A mutation in SEN1 conferring temperature-sensitive lethality also causes in vivo accumulation of pre-tRNAs and a deficiency of in vitro endonuclease activity. Biochemical evidence suggests that the gene product may be one of several components of a nuclear-localized splicing complex. We have cloned the SEN1 gene and characterized the SEN1 mRNA, the SEN1 gene product, the temperature-sensitive sen1-1 mutation, and three SEN1 null alleles. The SEN1 gene corresponds to a 6,336-bp open reading frame coding for a 2,112-amino-acid protein (molecular mass, 239 kDa). Using antisera directed against the C-terminal end of SEN1, we detect a protein corresponding to the predicted molecular weight of SEN1. The SEN1 protein contains a leucine zipper motif, consensus elements for nucleoside triphosphate binding, and a potential nuclear localization signal sequence. The carboxy-terminal 1,214 amino acids of the SEN1 protein are essential for growth, whereas the amino-terminal 898 amino acids are dispensable. A sequence of approximately 500 amino acids located in the essential region of SEN1 has significant similarity to the yeast UPF1 gene product, which is involved in mRNA turnover, and the mouse Mov-10 gene product, whose function is unknown. The mutation that creates the temperature-sensitive sen1-1 allele is located within this 500-amino-acid region, and it causes a substitution for an amino acid that is conserved in all three proteins.


1981 ◽  
Vol 1 (7) ◽  
pp. 584-593 ◽  
Author(s):  
P Niederberger ◽  
G Miozzari ◽  
R Hütter

The biological role of the "general control of amino acid biosynthesis" has been investigated by analyzing growth and enzyme levels in wild-type, bradytrophic, and nonderepressing mutant strains of Saccharomyces cerevisiae. Amino acid limitation was achieved by using either bradytrophic mutations or external amino acid imbalance. In the wild-type strain noncoordinate derepression of enzymes subject to the general control has been found. Derepressing factors were in the order of 2 to 4 in bradytrophic mutant strains grown under limiting conditions and only in the order of 1.5 to 2 under the influence of external amino acid imbalance. Nonderepressing mutations led to slower growth rates under conditions of amino acid limitation, and no derepression of enzymes under the general control was observed. The amino acid pools were found to be very similar in the wild type and in nonderepressing mutant strains under all conditions tested. Our results indicate that the general control affects all branched amino acid biosynthetic pathways, namely, those of the aromatic amino acids and the aspartate family, the pathways for the basic amino acids lysine, histidine, and arginine, and also the pathways of serine and valine biosyntheses.


1989 ◽  
Vol 9 (9) ◽  
pp. 4056-4060
Author(s):  
P Friden ◽  
C Reynolds ◽  
P Schimmel

LEU3 of Saccharomyces cerevisiae encodes an 886-amino-acid polypeptide that activates transcription of at least five genes by binding to an upstream decanucleotide sequence. This activation is dependent on the inducer alpha-isopropylmalate, the synthesis of which is repressed by leucine. We created a 285-amino-acid LEU3 derivative by removing a large block of internal sequences, including a dense cluster of acidic residues. This deletion protein bound to the decanucleotide sequence in vitro and activated gene expression in vivo. In contrast to wild-type LEU3, the truncated LEU3 protein was an effective transcriptional activator when alpha-isopropylmalate synthesis was repressed by leucine.


1992 ◽  
Vol 12 (5) ◽  
pp. 2154-2164
Author(s):  
D J DeMarini ◽  
M Winey ◽  
D Ursic ◽  
F Webb ◽  
M R Culbertson

The SEN1 gene, which is essential for growth in the yeast Saccharomyces cerevisiae, is required for endonucleolytic cleavage of introns from all 10 families of precursor tRNAs. A mutation in SEN1 conferring temperature-sensitive lethality also causes in vivo accumulation of pre-tRNAs and a deficiency of in vitro endonuclease activity. Biochemical evidence suggests that the gene product may be one of several components of a nuclear-localized splicing complex. We have cloned the SEN1 gene and characterized the SEN1 mRNA, the SEN1 gene product, the temperature-sensitive sen1-1 mutation, and three SEN1 null alleles. The SEN1 gene corresponds to a 6,336-bp open reading frame coding for a 2,112-amino-acid protein (molecular mass, 239 kDa). Using antisera directed against the C-terminal end of SEN1, we detect a protein corresponding to the predicted molecular weight of SEN1. The SEN1 protein contains a leucine zipper motif, consensus elements for nucleoside triphosphate binding, and a potential nuclear localization signal sequence. The carboxy-terminal 1,214 amino acids of the SEN1 protein are essential for growth, whereas the amino-terminal 898 amino acids are dispensable. A sequence of approximately 500 amino acids located in the essential region of SEN1 has significant similarity to the yeast UPF1 gene product, which is involved in mRNA turnover, and the mouse Mov-10 gene product, whose function is unknown. The mutation that creates the temperature-sensitive sen1-1 allele is located within this 500-amino-acid region, and it causes a substitution for an amino acid that is conserved in all three proteins.


1988 ◽  
Vol 8 (2) ◽  
pp. 664-673 ◽  
Author(s):  
S Kanazawa ◽  
M Driscoll ◽  
K Struhl

In Saccharomyces cerevisiae, 3-amino-1,2,4-triazole (aminotriazole) competitively inhibits the activity of imidazoleglycerolphosphate dehydratase, the product of the HIS3 gene. Wild-type strains are able to grow in the presence of 10 mM aminotriazole because they induce the level of imidazoleglycerolphosphate dehydratase. However, strains containing gcn4 mutations are unable to grow in medium containing aminotriazole because they lack the GCN4 transcriptional activator protein necessary for the coordinate induction of HIS3 and other amino acid biosynthetic genes. Here, we isolated a new gene, designated ATR1, which when present in multiple copies per cell allowed gcn4 mutant strains to grow in the presence of aminotriazole. In wild-type strains, multiple copies of ATR1 permitted growth at extremely high concentrations of aminotriazole (80 mM), whereas a chromosomal deletion of ATR1 caused growth inhibition at very low concentrations (5 mM). When radioactive aminotriazole was added exogenously, cells with multiple copies of ATR1 accumulated less aminotriazole than wild-type cells, whereas cells with the atr1 deletion mutation retained more aminotriazole. Unlike the mammalian mdr or yeast PDR genes that confer resistance to many drugs, ATR1 appears to confer resistance only to aminotriazole. Genetic analysis, mRNA mapping, and DNA sequencing revealed that (i) the primary translation product of ATR1 contains 547 amino acids, (ii) ATR1 transcription is induced by aminotriazole, and (iii) the ATR1 promoter region contains a binding site for the GCN4 activator protein. The deduced amino acid sequence suggests that ATR1 protein is very hydrophobic with many membrane-spanning regions, has several potential glycosylation sites, and may contain an ATP-binding site. We suggest that ATR1 encodes a membrane-associated component of the machinery responsible for pumping aminotriazole (and possibly other toxic compounds) out of the cell.


1981 ◽  
Vol 1 (7) ◽  
pp. 584-593
Author(s):  
P Niederberger ◽  
G Miozzari ◽  
R Hütter

The biological role of the "general control of amino acid biosynthesis" has been investigated by analyzing growth and enzyme levels in wild-type, bradytrophic, and nonderepressing mutant strains of Saccharomyces cerevisiae. Amino acid limitation was achieved by using either bradytrophic mutations or external amino acid imbalance. In the wild-type strain noncoordinate derepression of enzymes subject to the general control has been found. Derepressing factors were in the order of 2 to 4 in bradytrophic mutant strains grown under limiting conditions and only in the order of 1.5 to 2 under the influence of external amino acid imbalance. Nonderepressing mutations led to slower growth rates under conditions of amino acid limitation, and no derepression of enzymes under the general control was observed. The amino acid pools were found to be very similar in the wild type and in nonderepressing mutant strains under all conditions tested. Our results indicate that the general control affects all branched amino acid biosynthetic pathways, namely, those of the aromatic amino acids and the aspartate family, the pathways for the basic amino acids lysine, histidine, and arginine, and also the pathways of serine and valine biosyntheses.


1996 ◽  
Vol 132 (4) ◽  
pp. 549-563 ◽  
Author(s):  
E E Swartzman ◽  
M N Viswanathan ◽  
J Thorner

The PAL1 gene was isolated using PCR and degenerate oligonucleotide primers corresponding to highly conserved amino acid sequence motifs diagnostic of the ATP-binding cassette domain of the superfamily of membrane-bound transport proteins typified by mammalian multidrug resistance transporter 1 and Saccharomyces cerevisiae Ste6. The deduced PAL1 gene product is similar in length to, has the same predicted topology as, and shares the highest degree of amino acid sequence identity with two human proteins, adrenoleukodystrophy protein and peroxisomal membrane protein (70 kD), which are both presumptive ATP-binding cassette transporters thought to be constituents of the peroxisomal membrane. As judged by hybridization of a PAL1 probe to isolated RNA and by expression of a PAL1-lacZ fusion, a PAL1 transcript was only detectable when cells were grown on oleic acid, a carbon source which requires the biogenesis of functional peroxisomes for its metabolism. A pal1delta mutant grew normally on either glucose- or glycerol-containing media; however, unlike PAL1+ cells (or the pal1delta mutant carrying the PAL1 gene on a plasmid), pal1delta cells were unable to grow on either a solid medium or a liquid medium containing oleic acid as the sole carbon source. Antibodies raised against a chimeric protein in which the COOH-terminal domain of Pal1 was fused to glutathione S-transferase specifically recognized a protein in extracts from wild-type cells only when grown on oleic acid; this species represents the PAL1 gene product because it was missing in pal1delta cells and more abundant in pal1delta cells expressing PAL1 from a multicopy plasmid. The Pal1 polypeptide was highly enriched in the organellar pellet fraction prepared from wild-type cells by differential centrifugation and comigrated upon velocity sedimentation in a Nycodenz gradient with a known component of the peroxisomal matrix, e-oxoacyl-CoA thiolase. As judged by both subcellular fractionation and indirect immunofluorescence, localization of 3-oxoacyl-CoA thiolase to peroxisomes was unchanged whether Pal1 was present, absent, or overexpressed. These findings demonstrate that Pal1 is a peroxisome-specific protein, that it is required for peroxisome function, but that it is not necessary for the biogenesis of peroxisomes or for the import of 3-oxoacyl-CoA thiolase (and at least two other peroxisomal matrix proteins).


1989 ◽  
Vol 9 (9) ◽  
pp. 4056-4060 ◽  
Author(s):  
P Friden ◽  
C Reynolds ◽  
P Schimmel

LEU3 of Saccharomyces cerevisiae encodes an 886-amino-acid polypeptide that activates transcription of at least five genes by binding to an upstream decanucleotide sequence. This activation is dependent on the inducer alpha-isopropylmalate, the synthesis of which is repressed by leucine. We created a 285-amino-acid LEU3 derivative by removing a large block of internal sequences, including a dense cluster of acidic residues. This deletion protein bound to the decanucleotide sequence in vitro and activated gene expression in vivo. In contrast to wild-type LEU3, the truncated LEU3 protein was an effective transcriptional activator when alpha-isopropylmalate synthesis was repressed by leucine.


Sign in / Sign up

Export Citation Format

Share Document