scholarly journals Use of yeast nuclear DNA sequences to define the mitochondrial RNA polymerase promoter in vitro.

1989 ◽  
Vol 9 (8) ◽  
pp. 3193-3202 ◽  
Author(s):  
G T Marczynski ◽  
P W Schultz ◽  
J A Jaehning

We have extended an earlier observation that the TATA box for the nuclear GAL10 gene serves as a promoter for the mitochondrial RNA polymerase in in vitro transcription reactions (C. S. Winkley, M. J. Keller, and J. A. Jaehning, J. Biol. Chem. 260:14214-14223, 1985). In this work, we demonstrate that other nuclear genes also have upstream sequences that function in vitro as mitochondrial RNA polymerase promoters. These genes include the GAL7 and MEL1 genes, which are regulated in concert with the GAL10 gene, the sigma repetitive element, and the 2 microns plasmid origin of replication. We used in vitro transcription reactions to test a large number of nuclear DNA sequences that contain critical mitochondrial promoter sequences as defined by Biswas et al. (T. K. Biswas, J. C. Edwards, M. Rabinowitz, and G. S. Getz, J. Biol. Chem. 262:13690-13696, 1987). The results of these experiments allowed us to extend the definition of essential promoter elements. This extended sequence, -ACTATAAACGatcATAG-, was frequently found in the upstream regulatory regions of nuclear genes. On the basis of these observations, we hypothesized that either (i) a catalytic RNA polymerase related to the mitochondrial enzyme functions in the nucleus of the yeast cell or (ii) a DNA sequence recognition factor is shared by the two genetic compartments. By using cells deficient in the catalytic core of the mitochondrial RNA polymerase (rpo41-) and sensitive assays for transcripts initiating from the nuclear promoter sequences, we have conclusively ruled out a role for the catalytic RNA polymerase in synthesizing transcripts from all of the nuclear sequences analyzed. The possibility that a DNA sequence recognition factor functions in both the nucleus and the mitochondria remains to be tested.

1989 ◽  
Vol 9 (8) ◽  
pp. 3193-3202
Author(s):  
G T Marczynski ◽  
P W Schultz ◽  
J A Jaehning

We have extended an earlier observation that the TATA box for the nuclear GAL10 gene serves as a promoter for the mitochondrial RNA polymerase in in vitro transcription reactions (C. S. Winkley, M. J. Keller, and J. A. Jaehning, J. Biol. Chem. 260:14214-14223, 1985). In this work, we demonstrate that other nuclear genes also have upstream sequences that function in vitro as mitochondrial RNA polymerase promoters. These genes include the GAL7 and MEL1 genes, which are regulated in concert with the GAL10 gene, the sigma repetitive element, and the 2 microns plasmid origin of replication. We used in vitro transcription reactions to test a large number of nuclear DNA sequences that contain critical mitochondrial promoter sequences as defined by Biswas et al. (T. K. Biswas, J. C. Edwards, M. Rabinowitz, and G. S. Getz, J. Biol. Chem. 262:13690-13696, 1987). The results of these experiments allowed us to extend the definition of essential promoter elements. This extended sequence, -ACTATAAACGatcATAG-, was frequently found in the upstream regulatory regions of nuclear genes. On the basis of these observations, we hypothesized that either (i) a catalytic RNA polymerase related to the mitochondrial enzyme functions in the nucleus of the yeast cell or (ii) a DNA sequence recognition factor is shared by the two genetic compartments. By using cells deficient in the catalytic core of the mitochondrial RNA polymerase (rpo41-) and sensitive assays for transcripts initiating from the nuclear promoter sequences, we have conclusively ruled out a role for the catalytic RNA polymerase in synthesizing transcripts from all of the nuclear sequences analyzed. The possibility that a DNA sequence recognition factor functions in both the nucleus and the mitochondria remains to be tested.


2008 ◽  
Vol 28 (18) ◽  
pp. 5795-5802 ◽  
Author(s):  
Mara L. Miller ◽  
Dennis L. Miller

ABSTRACT Mitochondrial gene expression is necessary for proper mitochondrial biogenesis. Genes on the mitochondrial DNA are transcribed by a dedicated mitochondrial RNA polymerase (mtRNAP) that is encoded in the nucleus and imported into mitochondria. In the myxomycete Physarum polycephalum, nucleotides that are not specified by the mitochondrial DNA templates are inserted into some RNAs, a process called RNA editing. This is an essential step in the expression of these RNAs, as the insertion of the nontemplated nucleotides creates open reading frames for the production of proteins from mRNAs or produces required secondary structure in rRNAs and tRNAs. The nontemplated nucleotide is added to the 3′ end of the RNA as the RNA is being synthesized during mitochondrial transcription. Because RNA editing is cotranscriptional, the mtRNAP is implicated in RNA editing as well as transcription. We have cloned the cDNA for the mtRNAP of Physarum and have expressed the mtRNAP in Escherichia coli. We have used in vitro transcription assays based on the Physarum mtRNAP to identify a novel activity associated with the mtRNAP in which non-DNA-templated nucleotides are added to the 3′ end of RNAs. Any of the four ribonucleoside triphosphates (rNTPs) can act as precursors for this process, and this novel activity is observed when only one rNTP is supplied, a condition under which transcription does not occur. The implications of this activity for the mechanism of RNA editing are discussed.


1986 ◽  
Vol 11 (4) ◽  
pp. 205-211 ◽  
Author(s):  
G. Martino ◽  
C. Covello ◽  
R. De Giovanni ◽  
R. Filippelli ◽  
G. Pitrelli

1987 ◽  
Vol 65 (2) ◽  
pp. 173-182 ◽  
Author(s):  
Michael Goldenthal ◽  
James T. Nishiura

A DNA-dependent RNA polymerase was solubilized from sucrose gradient isolated, DNase-treated mitochrondria of Drosophila melanogaster. The isolated mitochondria were not detectably contaminated with nuclear DNA as shown by CsCl gradient centrifugation and polylysine Kieselguhr chromatography. The detergent-solubilized RNA polymerase was sensitive to rifampicin, resistant to α-amanitin, had an apparent molecular mass of about 60 kilodaltons, and displayed a tendency to aggregate, both in crude extracts or when purified. The mitochondrial RNA polymerase could be distinguished from nuclear RNA polymerases on the basis of size, salt optima, rifampicin sensitivity, and α-amanitin resistance.


1995 ◽  
Vol 15 (12) ◽  
pp. 7032-7042 ◽  
Author(s):  
I Antoshechkin ◽  
D F Bogenhagen

Transcription of Xenopus laevis mitochondrial DNA (xl-mtDNA) by the mitochondrial RNA polymerase requires a dissociable factor. This factor was purified to near homogeneity and identified as a 40-kDa protein. A second protein implicated in the transcription of mtDNA, the Xenopus homolog of the HMG box protein mtTFA, was also purified to homogeneity and partially sequenced. The sequence of a cDNA clone encoding xl-mtTFA revealed a high degree of sequence similarity to human and Saccharomyces cerevisiae mtTFA. xl-mtTFA was not required for basal transcription from a minimal mtDNA promoter, and this HMG box factor could not substitute for the basal factor, which is therefore designated xl-mtTFB. An antibody directed against the N terminus of xl-mtTFA did not cross-react with xl-mtTFB. xl-mtTFA is an abundant protein that appears to have at least two functions in mitochondria. First, it plays a major role in packaging mtDNA within the organelle. Second, DNase I footprinting experiments identified preferred binding sites for xl-mtTFA within the control region of mtDNA next to major mitochondrial promoters. We show that binding of xl-mtTFA to a site separating the two clusters of bidirectional promoters selectively stimulates specific transcription in vitro by the basal transcription machinery, comprising mitochondrial RNA polymerase and xl-mtTFB.


2019 ◽  
Vol 116 (17) ◽  
pp. 8310-8319 ◽  
Author(s):  
Patricia Sanchez-Vazquez ◽  
Colin N. Dewey ◽  
Nicole Kitten ◽  
Wilma Ross ◽  
Richard L. Gourse

The second messenger nucleotide ppGpp dramatically alters gene expression in bacteria to adjust cellular metabolism to nutrient availability. ppGpp binds to two sites on RNA polymerase (RNAP) inEscherichia coli, but it has also been reported to bind to many other proteins. To determine the role of the RNAP binding sites in the genome-wide effects of ppGpp on transcription, we used RNA-seq to analyze transcripts produced in response to elevated ppGpp levels in strains with/without the ppGpp binding sites on RNAP. We examined RNAs rapidly after ppGpp production without an accompanying nutrient starvation. This procedure enriched for direct effects of ppGpp on RNAP rather than for indirect effects on transcription resulting from starvation-induced changes in metabolism or on secondary events from the initial effects on RNAP. The transcriptional responses of all 757 genes identified after 5 minutes of ppGpp induction depended on ppGpp binding to RNAP. Most (>75%) were not reported in earlier studies. The regulated transcripts encode products involved not only in translation but also in many other cellular processes. In vitro transcription analysis of more than 100 promoters from the in vivo dataset identified a large collection of directly regulated promoters, unambiguously demonstrated that most effects of ppGpp on transcription in vivo were direct, and allowed comparison of DNA sequences from inhibited, activated, and unaffected promoter classes. Our analysis greatly expands our understanding of the breadth of the stringent response and suggests promoter sequence features that contribute to the specific effects of ppGpp.


1986 ◽  
Vol 6 (7) ◽  
pp. 2543-2550
Author(s):  
D F Bogenhagen ◽  
B K Yoza

The mitochondrial RNA polymerase from Xenopus laevis oocytes was partially purified by heparin-Sepharose chromatography and phosphocellulose chromatography. This RNA polymerase preparation specifically initiated the transcription of X. laevis mitochondrial DNA (mtDNA) from two bidirectional promoters contained within a 123-base-pair segment of the mtDNA between the heavy-strand replication origin and the rRNA cistrons. Transcription in vitro initiated from precisely the same start sites previously mapped as initiation sites for transcription in vivo. At each of the four sites, initiation occurred within a conserved nucleotide sequence, ACPuTTATA. This consensus sequence is not related to promoters for transcription of human mtDNA.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
Maryam Ehteshami ◽  
Longhu Zhou ◽  
Sheida Amiralaei ◽  
Jadd R. Shelton ◽  
Jong Hyun Cho ◽  
...  

ABSTRACT Nucleoside analog inhibitors (NAIs) are an important class of antiviral agents. Although highly effective, some NAIs with activity against hepatitis C virus (HCV) can cause toxicity, presumably due to off-target inhibition of host mitochondrial RNA polymerase (POLRMT). The in vitro nucleotide substrate specificity of POLRMT was studied in order to explore structure-activity relationships that can facilitate the identification of nontoxic NAIs. These findings have important implications for the development of all anti-RNA virus NAIs.


1995 ◽  
Vol 15 (1) ◽  
pp. 580-589 ◽  
Author(s):  
B Xu ◽  
D A Clayton

Critical features of the mitochondrial leading-strand DNA replication origin are conserved from Saccharomyces cerevisiae to humans. These include a promoter and a downstream GC-rich sequence block (CSBII) that encodes rGs within the primer RNA. During in vitro transcription at yeast mitochondrial replication origins, there is stable and persistent RNA-DNA hybrid formation that begins at the 5' end of the rG region. The short rG-dC sequence is the necessary and sufficient nucleic acid element for establishing stable hybrids, and the presence of rGs within the RNA strand of the RNA-DNA hybrid is required. The efficiency of hybrid formation depends on the length of RNA synthesized 5' to CSBII and the type of RNA polymerase employed. Once made, the RNA strand of an RNA-DNA hybrid can serve as an effective primer for mitochondrial DNA polymerase. These results reveal a new mechanism for persistent RNA-DNA hybrid formation and suggest a step in priming mitochondrial DNA replication that requires both mitochondrial RNA polymerase and an rG-dC sequence-specific event to form an extensive RNA-DNA hybrid.


Sign in / Sign up

Export Citation Format

Share Document