Researchers Analyze Microbial Cells via Imaging Mass Spectrometry

2010 ◽  
Vol 5 (12) ◽  
pp. 508-509
Author(s):  
Carol Potera
2020 ◽  
Author(s):  
Elizabeth Neumann ◽  
Lukasz Migas ◽  
Jamie L. Allen ◽  
Richard Caprioli ◽  
Raf Van de Plas ◽  
...  

<div> <div> <p>Small metabolites are essential for normal and diseased biological function but are difficult to study because of their inherent structural complexity. MALDI imaging mass spectrometry (IMS) of small metabolites is particularly challenging as MALDI matrix clusters are often isobaric with metabolite ions, requiring high resolving power instrumentation or derivatization to circumvent this issue. An alternative to this is to perform ion mobility separation before ion detection, enabling the visualization of metabolites without the interference of matrix ions. Here, we use MALDI timsTOF IMS to image small metabolites at high spatial resolution within the human kidney. Through this, we have found metabolites, such as arginic acid, acetylcarnitine, and choline that localize to the cortex, medulla, and renal pelvis, respectively. We have also demonstrated that trapped ion mobility spectrometry (TIMS) can resolve matrix peaks from metabolite signal and separate both isobaric and isomeric metabolites with different localizations within the kidney. The added ion mobility data dimension dramatically increased the peak capacity for molecular imaging experiments. Future work will involve further exploring the small metabolite profiles of human kidneys as a function of age, gender, and ethnicity.</p></div></div>


2021 ◽  
Vol 22 (3) ◽  
pp. 1085
Author(s):  
Aneeqa Noor ◽  
Saima Zafar ◽  
Inga Zerr

Proteinopathy refers to a group of disorders defined by depositions of amyloids within living tissue. Neurodegenerative proteinopathies, including Alzheimer’s disease, Parkinson’s disease, Creutzfeldt–Jakob disease, and others, constitute a large fraction of these disorders. Amyloids are highly insoluble, ordered, stable, beta-sheet rich proteins. The emerging theory about the pathophysiology of neurodegenerative proteinopathies suggests that the primary amyloid-forming proteins, also known as the prion-like proteins, may exist as multiple proteoforms that contribute differentially towards the disease prognosis. It is therefore necessary to resolve these disorders on the level of proteoforms rather than the proteome. The transient and hydrophobic nature of amyloid-forming proteins and the minor post-translational alterations that lead to the formation of proteoforms require the use of highly sensitive and specialized techniques. Several conventional techniques, like gel electrophoresis and conventional mass spectrometry, have been modified to accommodate the proteoform theory and prion-like proteins. Several new ones, like imaging mass spectrometry, have also emerged. This review aims to discuss the proteoform theory of neurodegenerative disorders along with the utility of these proteomic techniques for the study of highly insoluble proteins and their associated proteoforms.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3197
Author(s):  
Rita Casadonte ◽  
Mark Kriegsmann ◽  
Katharina Kriegsmann ◽  
Isabella Hauk ◽  
Rolf R. Meliß ◽  
...  

The discrimination of malignant melanoma from benign nevi may be difficult in some cases. For this reason, immunohistological and molecular techniques are included in the differential diagnostic toolbox for these lesions. These methods are time consuming when applied subsequently and, in some cases, no definitive diagnosis can be made. We studied both lesions by imaging mass spectrometry (IMS) in a large cohort (n = 203) to determine a different proteomic profile between cutaneous melanomas and melanocytic nevi. Sample preparation and instrument setting were tested to obtain optimal results in term of data quality and reproducibility. A proteomic signature was found by linear discriminant analysis to discern malignant melanoma from benign nevus (n = 113) with an overall accuracy of >98%. The prediction model was tested in an independent set (n = 90) reaching an overall accuracy of 93% in classifying melanoma from nevi. Statistical analysis of the IMS data revealed mass-to-charge ratio (m/z) peaks which varied significantly (Area under the receiver operating characteristic curve > 0.7) between the two tissue types. To our knowledge, this is the largest IMS study of cutaneous melanoma and nevi performed up to now. Our findings clearly show that discrimination of melanocytic nevi from melanoma is possible by IMS.


Author(s):  
Laura K. Schnackenberg ◽  
David A. Thorn ◽  
Dustyn Barnette ◽  
E. Ellen Jones

2014 ◽  
Vol 14 (2) ◽  
pp. 986-996 ◽  
Author(s):  
Domenico Taverna ◽  
Alonda C. Pollins ◽  
Giovanni Sindona ◽  
Richard M. Caprioli ◽  
Lillian B. Nanney

2014 ◽  
Vol 55 (11) ◽  
pp. 2343-2353 ◽  
Author(s):  
Christian Marsching ◽  
Richard Jennemann ◽  
Raphael Heilig ◽  
Hermann-Josef Gröne ◽  
Carsten Hopf ◽  
...  

Alcohol ◽  
2018 ◽  
Vol 67 ◽  
pp. 51-63 ◽  
Author(s):  
Suzanne M. de la Monte ◽  
Jared Kay ◽  
Emine B. Yalcin ◽  
Jillian J. Kril ◽  
Donna Sheedy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document