scholarly journals Extracellular Metabolism Sets the Table for Microbial Cross-Feeding

2021 ◽  
Vol 85 (1) ◽  
Author(s):  
Ryan K. Fritts ◽  
Alexandra L. McCully ◽  
James B. McKinlay

SUMMARY The transfer of nutrients between cells, or cross-feeding, is a ubiquitous feature of microbial communities with emergent properties that influence our health and orchestrate global biogeochemical cycles. Cross-feeding inevitably involves the externalization of molecules. Some of these molecules directly serve as cross-fed nutrients, while others can facilitate cross-feeding. Altogether, externalized molecules that promote cross-feeding are diverse in structure, ranging from small molecules to macromolecules. The functions of these molecules are equally diverse, encompassing waste products, enzymes, toxins, signaling molecules, biofilm components, and nutrients of high value to most microbes, including the producer cell. As diverse as the externalized and transferred molecules are the cross-feeding relationships that can be derived from them. Many cross-feeding relationships can be summarized as cooperative but are also subject to exploitation. Even those relationships that appear to be cooperative exhibit some level of competition between partners. In this review, we summarize the major types of actively secreted, passively excreted, and directly transferred molecules that either form the basis of cross-feeding relationships or facilitate them. Drawing on examples from both natural and synthetic communities, we explore how the interplay between microbial physiology, environmental parameters, and the diverse functional attributes of extracellular molecules can influence cross-feeding dynamics. Though microbial cross-feeding interactions represent a burgeoning field of interest, we may have only begun to scratch the surface.

BIO-PROTOCOL ◽  
2018 ◽  
Vol 8 (8) ◽  
Author(s):  
Eduardo Alves ◽  
Rosana Ferreira ◽  
L. Caetano Antunes

2021 ◽  
Author(s):  
Jingyu Wang ◽  
Hui Li ◽  
Bing Xu

Supramolecular assemblies of small molecules, exhibiting emergent properties, are becoming a new and dynamic molecular platform for biological functions and for developing novel therapeutic approaches.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Alexandra L. McCully ◽  
Breah LaSarre ◽  
James B. McKinlay

ABSTRACT Many mutualistic microbial relationships are based on nutrient cross-feeding. Traditionally, cross-feeding is viewed as being unidirectional, from the producer to the recipient. This is likely true when a producer’s waste, such as a fermentation product, has value only for a recipient. However, in some cases the cross-fed nutrient holds value for both the producer and the recipient. In such cases, there is potential for nutrient reacquisition by producer cells in a population, leading to competition against recipients. Here, we investigated the consequences of interpartner competition for cross-fed nutrients on mutualism dynamics by using an anaerobic coculture pairing fermentative Escherichia coli and phototrophic Rhodopseudomonas palustris. In this coculture, E. coli excretes waste organic acids that provide a carbon source for R. palustris. In return, R. palustris cross-feeds E. coli ammonium (NH4 +), a compound that both species value. To explore the potential for interpartner competition, we first used a kinetic model to simulate cocultures with varied affinities for NH4 + in each species. The model predicted that interpartner competition for NH4 + could profoundly impact population dynamics. We then experimentally tested the predictions by culturing mutants lacking NH4 + transporters in both NH4 + competition assays and mutualistic cocultures. Both theoretical and experimental results indicated that the recipient must have a competitive advantage in acquiring cross-fed NH4 + to sustain the mutualism. This recipient-biased competitive advantage is predicted to be crucial, particularly when the communally valuable nutrient is generated intracellularly. Thus, the very metabolites that form the basis for mutualistic cross-feeding can also be subject to competition between mutualistic partners. IMPORTANCE Mutualistic relationships, particularly those based on nutrient cross-feeding, promote stability of diverse ecosystems and drive global biogeochemical cycles. Cross-fed nutrients within these systems can be either waste products valued by only one partner or nutrients valued by both partners. Here, we explored how interpartner competition for a communally valuable cross-fed nutrient impacts mutualism dynamics. We discovered that mutualism stability necessitates that the recipient have a competitive advantage against the producer in obtaining the cross-fed nutrient, provided that the nutrient is generated intracellularly. We propose that the requirement for recipient-biased competition is a general rule for mutualistic coexistence based on the transfer of intracellularly generated, communally valuable resources. IMPORTANCE Mutualistic relationships, particularly those based on nutrient cross-feeding, promote stability of diverse ecosystems and drive global biogeochemical cycles. Cross-fed nutrients within these systems can be either waste products valued by only one partner or nutrients valued by both partners. Here, we explored how interpartner competition for a communally valuable cross-fed nutrient impacts mutualism dynamics. We discovered that mutualism stability necessitates that the recipient have a competitive advantage against the producer in obtaining the cross-fed nutrient, provided that the nutrient is generated intracellularly. We propose that the requirement for recipient-biased competition is a general rule for mutualistic coexistence based on the transfer of intracellularly generated, communally valuable resources.


2014 ◽  
Vol 11 (9) ◽  
pp. 1309-1329 ◽  
Author(s):  
Bernard Testa ◽  
Giulio Vistoli ◽  
Alessandro Pedretti

2017 ◽  
Author(s):  
Alexandra L. McCully ◽  
Breah LaSarre ◽  
James B. McKinlay

AbstractMany mutualistic microbial relationships are based on nutrient cross-feeding. Traditionally, cross-feeding is viewed as being unidirectional from the producer to the recipient. This is likely true when a producer’s metabolic waste, such as fermentation products, provides carbon for a recipient. However, in some cases the cross-fed nutrient holds value for both the producer and the recipient. In such cases, there is potential for nutrient reacquisition by producer cells in a population, leading to competition against recipients. Here we investigate the consequences of inter-partner competition for cross-fed nutrients on mutualism dynamics using an anaerobic coculture pairing fermentative Escherichia coli and phototrophic Rhodopseudomonas palustris. In this coculture, E. coli excretes waste organic acids that provide carbon for R. palustris. In return, R. palustris cross-feeds E. coli ammonium (NH4+), a valuable nitrogen compound that both species prefer. To explore the potential for inter-partner competition, we first used a kinetic model to simulate cocultures with varied affinities for NH4+ in each species. The model predicted that inter-partner competition for cross-fed NH4+ could profoundly impact population dynamics. We then experimentally tested the predictions by culturing mutants lacking NH4+ transporters in both NH4+ competition assays and cooperative cocultures. Both theoretical and experimental results indicated that the recipient must have a competitive advantage in acquiring valuable cross-fed NH4+ to avoid collapse of the mutualism. Thus, the very metabolites that form the basis for cooperative cross-feeding can also be subject to competition between mutualistic partners.SignificanceMutualistic relationships, particularly those based on nutrient cross-feeding, promote stability of diverse ecosystems and drive global biogeochemical cycles. Cross-fed nutrients within these systems can be either waste products valued only by one partner or nutrients that both partners value. Here, we explore how inter-partner competition for a communally-valuable cross-fed nutrient impacts mutualism dynamics. We discovered that mutualism stability necessitates that the recipient have a competitive advantage against the producer in obtaining the cross-fed nutrient. We propose that the requirement for recipient-biased competition is a general rule for mutualistic coexistence based on the transfer of communally valuable resources, microbial or otherwise.


Author(s):  
Ji-da Dai ◽  
M. Joseph Costello ◽  
Lawrence I. Gilbert

Insect molting and metamorphosis are elicited by a class of polyhydroxylated steroids, ecdysteroids, that originate in the prothoracic glands (PGs). Prothoracicotropic hormone stimulation of steroidogenesis by the PGs at the cellular level involves both calcium and cAMP. Cell-to-cell communication mediated by gap junctions may play a key role in regulating signal transduction by controlling the transmission of small molecules and ions between adjacent cells. This is the first report of gap junctions in the PGs, the evidence obtained by means of SEM, thin sections and freeze-fracture replicas.


Author(s):  
H.B. Pollard ◽  
C.E. Creutz ◽  
C.J. Pazoles ◽  
J.H. Scott

Exocytosis is a general concept describing secretion of enzymes, hormones and transmitters that are otherwise sequestered in intracellular granules. Chemical evidence for this concept was first gathered from studies on chromaffin cells in perfused adrenal glands, in which it was found that granule contents, including both large protein and small molecules such as adrenaline and ATP, were released together while the granule membrane was retained in the cell. A number of exhaustive reviews of this early work have been published and are summarized in Reference 1. The critical experiments demonstrating the importance of extracellular calcium for exocytosis per se were also first performed in this system (2,3), further indicating the substantial service given by chromaffin cells to those interested in secretory phenomena over the years.


2020 ◽  
Vol 48 (2) ◽  
pp. 399-409
Author(s):  
Baizhen Gao ◽  
Rushant Sabnis ◽  
Tommaso Costantini ◽  
Robert Jinkerson ◽  
Qing Sun

Microbial communities drive diverse processes that impact nearly everything on this planet, from global biogeochemical cycles to human health. Harnessing the power of these microorganisms could provide solutions to many of the challenges that face society. However, naturally occurring microbial communities are not optimized for anthropogenic use. An emerging area of research is focusing on engineering synthetic microbial communities to carry out predefined functions. Microbial community engineers are applying design principles like top-down and bottom-up approaches to create synthetic microbial communities having a myriad of real-life applications in health care, disease prevention, and environmental remediation. Multiple genetic engineering tools and delivery approaches can be used to ‘knock-in' new gene functions into microbial communities. A systematic study of the microbial interactions, community assembling principles, and engineering tools are necessary for us to understand the microbial community and to better utilize them. Continued analysis and effort are required to further the current and potential applications of synthetic microbial communities.


Sign in / Sign up

Export Citation Format

Share Document