li content
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 37)

H-INDEX

22
(FIVE YEARS 3)

Author(s):  
G. A. Batyrova ◽  
G. A. Umarova ◽  
E. A. Umarov ◽  
P. Z. Aitmaganbet ◽  
Z. S. Tlegenova ◽  
...  

The article presents data on the study of the content of lithium in the hair of the adult population of the Aktobe region of the Republic of Kazakhstan and the relationship with mental illness. The aim of the study is to assess the content of lithium in the biosubstrates of the adult population and its relationship with the morbidity of the population of the Aktobe region.Materials and methods: A one-stage cross-sectional study was carried out on the territory of the Aktobe region of the Republic of Kazakhstan. The study included 340 residents aged 18-60 years permanently residing in the study area using the method of simple random sampling. The lithium content in hair was determined by inductively coupled plasma mass spectrometry on a NexION 300D spectrometer (PerkinElmer Inc., USA) equipped with an ESI SC-2 DX4 sampler (Elemental Scientific Inc., USA). The morbidity rates were studied according to the ICD-10 classes per 100 thousand population. To assess the relationship between the Li content in the hair and the morbidity rates, the Spearman rank correlation coefficient was calculated.Results: According to the results of the study, significant deviations from the reference values were observed for the lithium content in the Aktobe region. There is an excess of lithium for 80.59% (CI: 76.38; 84.79) of the subjects, the norm is 19.41% (CI: 15.21; 23.62). Excess lithium is more common in men than in women (χ2  =11.07 df=1; p=0.001). Considering the districts of the Aktobe region, the highest content of Li (Me (q25-q75)) was found in the Aitekebi district (0.084 (0.022 -0.134)) mcg/g, in the Kobda district 0.069 (0.060- 0.076) mcg/g, in the Mugalzhar district 0.046 (0.019-0.066) mcg/g, in the Oiyl district 0.044 (0.021-0.0762) mcg/g, in the Alga district 0.040 (0.024-0.090) mcg/g. Spearman’s correlation rank analysis showed a weak positive association of Li content with age (r=0.20, p =0.0001), no association with body mass index was found (r=0.10, p =0.06). The correlation analysis established a direct inverse average relationship between the content of Li and morbidity in the class of diseases “Mental disorders and behavioral disorders” (r=-0.62; p= 0.044).Conclusions: The high prevalence of excess lithium content in the hair of the population and its relationship with mental illness requires further research. The study of the bioelement status of the population can serve as an indicator of environmental pollution, and also aims at monitoring the ecological situation in the region.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7357
Author(s):  
Chang-Sung Lim ◽  
Aleksandr Aleksandrovsky ◽  
Maxim Molokeev ◽  
Aleksandr Oreshonkov ◽  
Victor Atuchin

A set of new triple molybdates, LixNa1-xCaGd0.5(MoO4)3:Ho3+0.05/Yb3+0.45, was successfully manufactured by the microwave-accompanied sol–gel-based process (MAS). Yellow molybdate phosphors LixNa1-xCaGd0.5(MoO4)3:Ho3+0.05/Yb3+0.45 with variation of the LixNa1-x (x = 0, 0.05, 0.1, 0.2, 0.3) ratio under constant doping amounts of Ho3+ = 0.05 and Yb3+ = 0.45 were obtained, and the effect of Li+ on their spectroscopic features was investigated. The crystal structures of LixNa1-xCaGd0.5(MoO4)3:Ho3+0.05/Yb3+0.45 (x = 0, 0.05, 0.1, 0.2, 0.3) at room temperature were determined in space group I41/a by Rietveld analysis. Pure NaCaGd0.5Ho0.05Yb0.45(MoO4)3 has a scheelite-type structure with cell parameters a = 5.2077 (2) and c = 11.3657 (5) Å, V = 308.24 (3) Å3, Z = 4. In Li-doped samples, big cation sites are occupied by a mixture of (Li,Na,Gd,Ho,Yb) ions, and this provides a linear cell volume decrease with increasing Li doping level. The evaluated upconversion (UC) behavior and Raman spectroscopic results of the phosphors are discussed in detail. Under excitation at 980 nm, the phosphors provide yellow color emission based on the 5S2/5F4 → 5I8 green emission and the 5F5 → 5I8 red emission. The incorporated Li+ ions gave rise to local symmetry distortion (LSD) around the cations in the substituted crystalline structure by the Ho3+ and Yb3+ ions, and they further affected the UC transition probabilities in triple molybdates LixNa1-xCaGd0.5(MoO4)3:Ho3+0.05/Yb3+0.45. The complex UC intensity dependence on the Li content is explained by the specificity of unit cell distortion in a disordered large ion system within the scheelite crystal structure. The Raman spectra of LixNa1-xCaGd0.5(MoO4)3 doped with Ho3+ and Yb3+ ions were totally superimposed with the luminescence signal of Ho3+ ions in the range of Mo–O stretching vibrations, and increasing the Li+ content resulted in a change in the Ho3+ multiplet intensity. The individual chromaticity points (ICP) for the LiNaCaGd(MoO4)3:Ho3+,Yb3+ phosphors correspond to the equal-energy point in the standard CIE (Commission Internationale de L’Eclairage) coordinates.


2021 ◽  
Vol 922 (2) ◽  
pp. 129
Author(s):  
Jhon Yana Galarza ◽  
Ricardo López-Valdivia ◽  
Jorge Meléndez ◽  
Diego Lorenzo-Oliveira

Abstract Binary stars are supposed to be chemically homogeneous, as they are born from the same molecular cloud. However, high-precision chemical abundances show that some binary systems display chemical differences between the components, which could be due to planet engulfment. In this work, we determine precise fundamental parameters and chemical abundances for the binary system HIP 71726/HIP 71737. Our results show that the pair is truly conatal, coeval, and comoving. We also find that the component HIP 71726 is more metal-rich than HIP 71737 in the refractory elements such as iron, with Δ[Fe/H] = 0.11 ± 0.01 dex. Moreover, HIP 71726 has a lithium abundance 1.03 dex higher than HIP 71737, which is the largest difference in Li detected in twin-star binary systems with ΔT eff ≤ 50 K. The ingestion of 9.8 − 1.6 + 2.0 M ⊕ of rocky material fully explains both the enhancement in refractory elements and the high Li content observed in HIP 71726, thereby reinforcing the planet-engulfment scenario in some binary systems.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7044
Author(s):  
Kunfeng Chen ◽  
Yunzhong Zhu ◽  
Zhihua Liu ◽  
Dongfeng Xue

Lithium niobate (LiNbO3) crystals are important dielectric and ferroelectric materials, which are widely used in acoustics, optic, and optoelectrical devices. The physical and chemical properties of LiNbO3 are dependent on microstructures, defects, compositions, and dimensions. In this review, we first discussed the crystal and defect structures of LiNbO3, then the crystallization of LiNbO3 single crystal, and the measuring methods of Li content were introduced to reveal reason of growing congruent LiNbO3 and variable Li/Nb ratios. Afterwards, this review provides a summary about traditional and non-traditional applications of LiNbO3 crystals. The development of rare earth doped LiNbO3 used in illumination, and fluorescence temperature sensing was reviewed. In addition to radio-frequency applications, surface acoustic wave devices applied in high temperature sensor and solid-state physics were discussed. Thanks to its properties of spontaneous ferroelectric polarization, and high chemical stability, LiNbO3 crystals showed enhanced performances in photoelectric detection, electrocatalysis, and battery. Furthermore, domain engineering, memristors, sensors, and harvesters with the use of LiNbO3 crystals were formulated. The review is concluded with an outlook of challenges and potential payoff for finding novel LiNbO3 applications.


2021 ◽  
Vol 21 (9) ◽  
pp. 4897-4901
Author(s):  
Hyo-Sang Yoo ◽  
Yong-Ho Kim ◽  
Hyeon-Taek Son

In this study, changes in the microstructure, mechanical properties, and electrical conductivity of cast and extruded Al–Zn–Cu–Mg based alloys with the addition of Li (0, 0.5 and 1.0 wt.%) were investigated. The Al–Zn–Cu–Mg–xLi alloys were cast and homogenized at 570 °C for 4 hours. The billets were hot extruded into rod that were 12 mm in diameter with a reduction ratio of 38:1 at 550 °C. As the amount of Li added increased from 0 to 1.0 wt.%, the average grain size of the extruded Al alloy increased from 259.2 to 383.0 µm, and the high-angle grain boundaries (HGBs) fraction decreased from 64.0 to 52.1%. As the Li content increased from 0 to 1.0 wt.%, the elongation was not significantly different from 27.8 to 27.4% and the ultimate tensile strength (UTS) was improved from 146.7 to 160.6 MPa. As Li was added, spherical particles bonded to each other, forming an irregular particles. It is thought that these irregular particles contribute to the strength improvement.


2021 ◽  
Vol 22 (17) ◽  
pp. 9214 ◽  
Author(s):  
Pardis Keikhosravani ◽  
Hossein Maleki-Ghaleh ◽  
Amir Kahaie Khosrowshahi ◽  
Mahdi Bodaghi ◽  
Ziba Dargahi ◽  
...  

The material for bone scaffold replacement should be biocompatible and antibacterial to prevent scaffold-associated infection. We biofunctionalized the hydroxyapatite (HA) properties by doping it with lithium (Li). The HA and 4 Li-doped HA (0.5, 1.0, 2.0, 4.0 wt.%) samples were investigated to find the most suitable Li content for both aspects. The synthesized nanoparticles, by the mechanical alloying method, were cold-pressed uniaxially and then sintered for 2 h at 1250 °C. Characterization using field-emission scanning electron microscopy (FE-SEM) revealed particle sizes in the range of 60 to 120 nm. The XRD analysis proved the formation of HA and Li-doped HA nanoparticles with crystal sizes ranging from 59 to 89 nm. The bioactivity of samples was investigated in simulated body fluid (SBF), and the growth of apatite formed on surfaces was evaluated using SEM and EDS. Cellular behavior was estimated by MG63 osteoblast-like cells. The results of apatite growth and cell analysis showed that 1.0 wt.% Li doping was optimal to maximize the bioactivity of HA. Antibacterial characteristics against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were performed by colony-forming unit (CFU) tests. The results showed that Li in the structure of HA increases its antibacterial properties. HA biofunctionalized by Li doping can be considered a suitable option for the fabrication of bone scaffolds due to its antibacterial and unique bioactivity properties.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4002
Author(s):  
Anamaria Iulia Török ◽  
Ana Moldovan ◽  
Erika Andrea Levei ◽  
Oana Cadar ◽  
Claudiu Tănăselia ◽  
...  

Lithium is a critical element for the modern society due to its uses in various industrial sectors. Despite its unequal distribution in the environment, Li occurrence in Romania was scarcely studied. In this study a versatile measurement method using ICP-MS technique was optimized for the determination of Li from various matrixes. Water, soil, and plant samples were collected from two important karst areas in the Dobrogea and Banat regions, Romania. The Li content was analyzed together with other macro- and microelement contents to find the relationship between the concentration of elements and their effect on the plants’ Li uptake. In Dobrogea region, half of the studied waters had high Li concentration, ranging between 3.00 and 12.2 μg/L in the case of water and between 0.88 and 11.1 mg/kg DW in the case of plants, while the Li content in the soil samples were slightly comparable (from 9.85 to 11.3 mg/kg DW). In the Banat region, the concentration of Li was lower than in Dobrogea (1.40–1.46 μg/L in water, 6.50–9.12 mg/kg DW in soil, and 0.19–0.45 mg/kg DW in plants). Despite the high Li contents in soil, the Li was mostly unavailable for plants uptake and bioaccumulation.


Data ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 68
Author(s):  
Cécile Fabre ◽  
Nour Eddine Ourti ◽  
Julien Mercadier ◽  
Joana Cardoso-Fernandes ◽  
Filipa Dias ◽  
...  

Lithium (Li) is one of the latest metals to be added to the list of critical materials in Europe and, thus, lithium exploration in Europe has become a necessity to guarantee its mid- to long-term stable supply. Laser-induced breakdown spectroscopy (LIBS) is a powerful analysis technique that allows for simultaneous multi-elemental analysis with an excellent coverage of light elements (Z < 13). This data paper provides more than 4000 LIBS spectra obtained using a handheld LIBS tool on approximately 140 Li-content materials (minerals, powder pellets, and rocks) and their Li concentrations. The high resolution of the spectrometers combined with the low detection limits for light elements make the LIBS technique a powerful option to detect Li and trace elements of first interest, such as Be, Cs, F, and Rb. The LIBS spectra dataset combined with the Li content dataset can be used to obtain quantitative estimation of Li in Li-rich matrices. This paper can be utilized as technical and spectroscopic support for Li detection in the field using a portable LIBS instrument.


Author(s):  
Sviatlana Pankavec ◽  
Jerzy Falandysz ◽  
Izabela Komorowicz ◽  
Alwyn R. Fernandes ◽  
Anetta Hanć ◽  
...  

AbstractIn an attempt to enrich the fruiting bodies with Lithium (Li), this study cultivated mushrooms using growing sets that were fortified with Li2O at 1.0, 5.0, 10, 50, 100 and 500 mg·kg−1 dw. Compost fortification up to 100 mg·kg−1 dw induced a dose-dependent increase in Li accumulation with resulting median mushroom concentrations of 2.0, 8.6, 16, 29 and 38 mg·kg−1 dw, respectively, relative to the unfortified control at 0.087 mg·kg−1 dw. The dose dependency appears to level off as Li2O addition approaches 100 mg·kg−1, suggesting that there is a limit to the ability of the species to accumulate/tolerate Li. Mushrooms did not grow at the 500 mg·kg−1 dw fortification level. At the highest viable level of fortification (100 mg·kg−1 dw), the fruiting bodies were around 440-fold richer in Li content than the control mushrooms. Additionally, the fortification at all levels up to 100 mg·kg−1 dw showed very low, if any, effect on the co-accumulation of the other, studied trace mineral constituents, with concentrations occurring at the lower range of those reported for commercial A. bisporus mushrooms.


Sign in / Sign up

Export Citation Format

Share Document