scholarly journals Development of a Nanobody-Based Lateral Flow Immunoassay for Detection of Human Norovirus

mSphere ◽  
2016 ◽  
Vol 1 (5) ◽  
Author(s):  
Sylvie Y. Doerflinger ◽  
Julia Tabatabai ◽  
Paul Schnitzler ◽  
Carlo Farah ◽  
Steffen Rameil ◽  
...  

ABSTRACT We previously identified a Nanobody (termed Nano-85) that bound to a highly conserved region on the norovirus capsid. In this study, the Nanobody was biotinylated and gold conjugated for a lateral flow immunoassay (termed Nano-IC). We showed that the Nano-IC assay was capable of detecting at least four antigenically distinct GII genotypes, including the newly emerging GII.17. In the clinical setting, the Nano-IC assay had sensitivities equivalent to other commercially available lateral flow systems. The Nano-IC method was capable of producing results in ~5 min, which makes this method useful in settings that require rapid diagnosis, such as cruise ship outbreaks and elder care facilities. The Nano-IC assay has several advantages over antibody-based IC methods: for example, Nanobodies can be readily produced in large quantities, they are generally more stable than conventional antibodies, and the Nanobody binding sites can be easily obtained by X-ray crystallography. Human noroviruses are the dominant cause of outbreaks of acute gastroenteritis. These viruses are usually detected by molecular methods, including reverse transcriptase PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Human noroviruses are genetically and antigenically diverse, with two main genogroups that are further subdivided into over 40 different genotypes. During the past decade, genogroup 2 genotype 4 (GII.4) has dominated in most countries, but recently, viruses belonging to GII.17 have increased in prevalence in a number of countries. A number of commercially available ELISAs and lateral flow immunoassays were found to have lower sensitivities to the GII.17 viruses, indicating that the antibodies used in these methods may not have a high level of cross-reactivity. In this study, we developed a rapid Nanobody-based lateral flow immunoassay (Nano-immunochromatography [Nano-IC]) for the detection of human norovirus in clinical specimens. The Nano-IC assay detected virions from two GII.4 norovirus clusters, which included the current dominant strain and a novel variant strain. The Nano-IC method had a sensitivity of 80% and specificity of 86% for outbreak specimens. Norovirus virus-like particles (VLPs) representing four genotypes (GII.4, GII.10, GII.12, and GII.17) could be detected by this method, demonstrating the potential in clinical screening. However, further modifications to the Nano-IC method are needed in order to improve this sensitivity, which may be achieved by the addition of other broadly reactive Nanobodies to the system. IMPORTANCE We previously identified a Nanobody (termed Nano-85) that bound to a highly conserved region on the norovirus capsid. In this study, the Nanobody was biotinylated and gold conjugated for a lateral flow immunoassay (termed Nano-IC). We showed that the Nano-IC assay was capable of detecting at least four antigenically distinct GII genotypes, including the newly emerging GII.17. In the clinical setting, the Nano-IC assay had sensitivities equivalent to other commercially available lateral flow systems. The Nano-IC method was capable of producing results in ~5 min, which makes this method useful in settings that require rapid diagnosis, such as cruise ship outbreaks and elder care facilities. The Nano-IC assay has several advantages over antibody-based IC methods: for example, Nanobodies can be readily produced in large quantities, they are generally more stable than conventional antibodies, and the Nanobody binding sites can be easily obtained by X-ray crystallography.

2016 ◽  
Vol 45 (30) ◽  
pp. 12206-12214 ◽  
Author(s):  
Marco Caterino ◽  
Ariel A. Petruk ◽  
Alessandro Vergara ◽  
Giarita Ferraro ◽  
Daniela Marasco ◽  
...  

Mass spectrometry, Raman microspectroscopy, circular dichroism and X-ray crystallography have been used to investigate the reaction of CO-releasing molecule Cs2IrCl5CO with the model protein RNase A.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Benjamin C McIlwain ◽  
Roja Gundepudi ◽  
B Ben Koff ◽  
Randy B Stockbridge

Fluc family fluoride channels protect microbes against ambient environmental fluoride by undermining the cytoplasmic accumulation of this toxic halide. These proteins are structurally idiosyncratic, and thus the permeation pathway and mechanism have no analogy in other known ion channels. Although fluoride binding sites were identified in previous structural studies, it was not evident how these ions access aqueous solution, and the molecular determinants of anion recognition and selectivity have not been elucidated. Using x-ray crystallography, planar bilayer electrophysiology and liposome-based assays, we identify additional binding sites along the permeation pathway. We use this information to develop an oriented system for planar lipid bilayer electrophysiology and observe anion block at one of these sites, revealing insights into the mechanism of anion recognition. We propose a permeation mechanism involving alternating occupancy of anion binding sites that are fully assembled only as the substrate approaches.


2016 ◽  
Vol 7 ◽  
Author(s):  
Zheng-Xin He ◽  
Lan-Chun Shi ◽  
Xiang-Yang Ran ◽  
Wei Li ◽  
Xian-Ling Wang ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hideto Isogai ◽  
Noriaki Hirayama

Since binding of a drug molecule to human serum albumin (HSA) significantly affects the pharmacokinetics of the drug, it is highly desirable to predict the binding affinity of the drug. Profen drugs are a widely used class of nonsteroidal anti-inflammatory drugs and it has been reported that several members of the profen class specifically bind to one of the main binding sites named site II. The actual binding mode of only ibuprofen has been directly confirmed by X-ray crystallography. Therefore, it is of interest whether other profen drugs are site II binders. Docking simulations using multiple template structures of HSA from three crystal structures of complexes between drugs and HSA have demonstrated that most of the currently available profen drugs should be site II binders.


Biochemistry ◽  
2016 ◽  
Vol 55 (26) ◽  
pp. 3692-3701 ◽  
Author(s):  
Boon Chong Goh ◽  
Huixing Wu ◽  
Michael J. Rynkiewicz ◽  
Klaus Schulten ◽  
Barbara A. Seaton ◽  
...  

mSphere ◽  
2016 ◽  
Vol 1 (2) ◽  
Author(s):  
Bishal K. Singh ◽  
Mila M. Leuthold ◽  
Grant S. Hansman

ABSTRACT Human norovirus interacts with the polymorphic human histo-blood group antigens (HBGAs), and this interaction is thought to be important for infection. The genogroup II genotype 4 (GII.4) noroviruses are the dominant cluster, evolve every other year, and are thought to modify their binding interactions with different HBGA types. Most human noroviruses bind HBGAs, while some strains were found to have minimal or no HBGA interactions. Here, we explain some possible structural constraints for several noroviruses that were found to bind poorly to HBGAs by using X-ray crystallography. We showed that one aspartic acid was flexible or positioned away from the fucose moiety of the HBGAs and this likely hindered binding, although other fucose-interacting residues were perfectly oriented. Interestingly, a neighboring loop also appeared to influence the loop hosting the aspartic acid. These new findings might explain why some human noroviruses bound HBGAs poorly, although further studies are required.


2018 ◽  
Vol 410 (17) ◽  
pp. 4123-4134 ◽  
Author(s):  
Laura Anfossi ◽  
Fabio Di Nardo ◽  
Margherita Profiti ◽  
Chiara Nogarol ◽  
Simone Cavalera ◽  
...  

2021 ◽  
Author(s):  
Sumirtha Balaratnam ◽  
Curran Rhodes ◽  
Desta Bume ◽  
Colleen Connelly ◽  
Christopher Lai ◽  
...  

Abstract The role of metabolite-responsive riboswitches in regulating gene expression in bacteria is well known and makes them useful systems for the study of RNA-small molecule interactions. Here, we study the PreQ1 riboswitch system, assessing sixteen diverse PreQ1-derived probes for their ability to selectively modify the riboswitch aptamer covalently. For the most active probe, a diazirine-based photocrosslinker, X-ray crystallography and gel-based competition assays demonstrated the mode of binding of the ligand to the aptamer, and functional assays demonstrated that the probe retains activity against the full riboswitch. Transcriptome-wide mapping using Chem-CLIP revealed a highly selective interaction between the bacterial aptamer and the small molecule. In addition, a small number of RNA targets in endogenous human transcripts were found to bind specifically to PreQ1, providing evidence for candidate PreQ1 aptamers in human RNA. This work demonstrates a stark influence of linker chemistry and structure on the ability of molecules to crosslink RNA, reveals that the PreQ1 aptamer/ligand pair are broadly useful for chemical biology applications, and provides insights into how PreQ1 interacts with human RNAs.


2020 ◽  
Author(s):  
Florentina Tofoleanu ◽  
Lesley Earl ◽  
Frank Pickard ◽  
Bernard Brooks

<p>We start from the water placement in cryo-EM maps and in X-ray crystal structures of beta-galactosidase. We apply MD simulations to analyze the behavior of the placed water, and how they are bound to the protein residues. We analyze the solvent exposure of binding sites for water, and the water residence time at these locations. Through a statistical analysis, we conclude that water placed by cryo-EM has a similar behavior to conserved water across multiple crystal structures.</p>


Sign in / Sign up

Export Citation Format

Share Document