scholarly journals The Integrative and Conjugative Element ICE Csp POL2 Contributes to the Outbreak of Multi-Antibiotic-Resistant Bacteria for Chryseobacterium Spp. and Elizabethkingia Spp.

2021 ◽  
Vol 9 (3) ◽  
Author(s):  
Jiafang Fu ◽  
Chuanqing Zhong ◽  
Yingping Zhou ◽  
Mengru Lu ◽  
Gongli Zong ◽  
...  

Infections with multiple antibiotic-resistant Chryseobacterium and Elizabethkingia in intensive care units have been increasing in recent years. In this study, the mobile integrative and conjugative element ICE Csp POL2, which was associated with the transmission of a carbapenem resistance gene, was identified in the genome of the multi-antibiotic-resistant strain Chryseobacterium sp.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Amy Langdon ◽  
◽  
Drew J. Schwartz ◽  
Christopher Bulow ◽  
Xiaoqing Sun ◽  
...  

Abstract Background Once antibiotic-resistant bacteria become established within the gut microbiota, they can cause infections in the host and be transmitted to other people and the environment. Currently, there are no effective modalities for decreasing or preventing colonization by antibiotic-resistant bacteria. Intestinal microbiota restoration can prevent Clostridioides difficile infection (CDI) recurrences. Another potential application of microbiota restoration is suppression of non-C. difficile multidrug-resistant bacteria and overall decrease in the abundance of antibiotic resistance genes (the resistome) within the gut microbiota. This study characterizes the effects of RBX2660, a microbiota-based investigational therapeutic, on the composition and abundance of the gut microbiota and resistome, as well as multidrug-resistant organism carriage, after delivery to patients suffering from recurrent CDI. Methods An open-label, multi-center clinical trial in 11 centers in the USA for the safety and efficacy of RBX2660 on recurrent CDI was conducted. Fecal specimens from 29 of these subjects with recurrent CDI who received either one (N = 16) or two doses of RBX2660 (N = 13) were analyzed secondarily. Stool samples were collected prior to and at intervals up to 6 months post-therapy and analyzed in three ways: (1) 16S rRNA gene sequencing for microbiota taxonomic composition, (2) whole metagenome shotgun sequencing for functional pathways and antibiotic resistome content, and (3) selective and differential bacterial culturing followed by isolate genome sequencing to longitudinally track multidrug-resistant organisms. Results Successful prevention of CDI recurrence with RBX2660 correlated with taxonomic convergence of patient microbiota to the donor microbiota as measured by weighted UniFrac distance. RBX2660 dramatically reduced the abundance of antibiotic-resistant Enterobacteriaceae in the 2 months after administration. Fecal antibiotic resistance gene carriage decreased in direct relationship to the degree to which donor microbiota engrafted. Conclusions Microbiota-based therapeutics reduce resistance gene abundance and resistant organisms in the recipient gut microbiome. This approach could potentially reduce the risk of infections caused by resistant organisms within the patient and the transfer of resistance genes or pathogens to others. Trial registration ClinicalTrials.gov, NCT01925417; registered on August 19, 2013.


Author(s):  
Miquel Serra-Burriel ◽  
Carlos Campillo-Artero ◽  
Antonella Agodi ◽  
Martina Barchitta ◽  
Guillem López-Casasnovas

Abstract Background: Intensive care unit (ICU)–acquired infections with antibiotic-resistant bacteria have been associated with substantial health and economic costs. Moreover, southern Europe has historically reported high levels of antimicrobial resistance. Objectives: We estimated the attributable economic burden of ICU-acquired infections due to resistant bacteria based upon hospital excess length of stay (LOS) in a selected sample of southern European countries. Methods: We studied a cohort of adult patients admitted to the ICU who developed an ICU-acquired infection related to an invasive procedure in a sample of Spanish, Italian, and Portuguese hospitals between 2008 and 2016, using data from The European Surveillance System (TESSy) released by the European Centers for Disease Control (ECDC). We analyzed the association between infections with selected antibiotic-resistant bacteria of public health importance and excess LOS using regression, matching, and time-to-event methods. We controlled for several confounding factors as well as time-dependent biases. We also computed the associated economic burden of excess resource utilization for each selected country. Results: In total, 13,441 patients with at least 1 ICU-acquired infection were included in the analysis: 4,106 patients (30.5%) were infected with antimicrobial-resistant bacteria, whereas 9,335 patients (69.5%) were infected with susceptible bacteria. The unadjusted association between resistance status and excess LOS was 7 days (95% CI, 6.13–7.87; P < .001). Fully adjusted models yielded significantly lower estimates: 2.76 days (95% CI, 1.98–3.54; P < .001) in the regression model, 2.60 days (95% CI, 1.66–3.55; P < .001) in the genetic matching model, and a hazard ratio of 1.15 (95% CI, 1.11–1.19; P < .001) in the adjusted Cox regression model. These estimates, alongside the prevalence of resistance, translated into direct hospitalization attributable costs per ICU-acquired infection of 5,224€ (95% CI, 3,691–6,757) for Spain, 4,461€ (95% CI, 1,948–6,974) for Portugal, and 4,320€ (95% CI, 1,662–6,977) for Italy. Conclusions: ICU-acquired infections associated with antibiotic-resistant bacteria are substantially associated with a 15% increase in excess LOS and resource utilization in 3 southern European countries. However, failure to appropriately control for significant confounders inflates estimates by ∼2.5-fold.


Sign in / Sign up

Export Citation Format

Share Document