Geological and geophysical perspectives on the magmatic and tectonic development, High Lava Plains and northwest Basin and Range

Author(s):  
Andrew Meigs ◽  
Kaleb Scarberry ◽  
Anita Grunder ◽  
Richard Carlson ◽  
Mark T. Ford ◽  
...  
Geology ◽  
2019 ◽  
Vol 47 (8) ◽  
pp. 695-699 ◽  
Author(s):  
Victor E. Camp

AbstractBimodal volcanism and rhyolite migration along the High Lava Plains in central Oregon (United States) lie above a broader feature defined by low seismic velocity in the upper mantle that emanates from the Yellowstone hotspot (northwest United States) and extends westward across the northern Basin and Range. It was emplaced by a westward current, driven in part by rapid buoyancy-driven flow across the east-west cratonic boundary of North America. Geothermometry studies and geochemical considerations suggest that the low-velocity feature may be composed of moderately hot, low-density mantle derived from the Yellowstone plume but diluted by thermomechanical erosion and entrainment of colder mantle lithosphere. Finger-like conduits of plume-modified mantle beneath Quaternary eruption sites delineate flow-line channels that have developed across the broader mantle structure since 2 Ma. These channels have allowed low-density mantle to accumulate against the Cascades arc, thus providing a heated mantle source for mafic magmatism in the Newberry (Oregon) and Medicine Lake (California) volcanic fields.


2021 ◽  
Author(s):  
Eric Löberich ◽  
Maureen D. Long ◽  
Lara S. Wagner ◽  
Ehsan Qorbani ◽  
Götz Bokelmann

<p>Shear-wave splitting observations of SKS and SKKS phases have been used widely to map azimuthal anisotropy, and to constrain the dominant mechanism of upper mantle deformation. As the interpretation is often ambiguous, it is useful to consider additional information, e.g. based on the non-vertical incidence of core-phases. Depending on the lattice-preferred orientation of anisotropic minerals, this condition leads to a variation of splitting parameters with azimuth and enables a differentiation between various types of olivine deformation. As the fabric of olivine-rich rocks in the upper mantle relates to certain ambient conditions, it is of key importance to further define it. In this study, we predict the azimuthal variation of splitting parameters for A-, C-, and E-type olivine, and match them with observations from the High Lava Plains, Northwestern Basin and Range, and Western Yellowstone Snake River Plain. This can help to constrain the amount of water in the upper mantle beneath an area, known for a consistent, mainly E-W fast orientation, and increased splitting delay in the back-arc of the Cascadia Subduction Zone. Comparing expected and observed variations renders a C-type olivine mechanism unlikely; a differentiation between A- and E-type olivine remains more difficult though. However, the agreement of the amplitude of azimuthal variation of the fast orientation, and the potential to explain larger splitting values, suggest the occurrence of E-type olivine and the presence of a hydrated upper mantle. Along with a discrepancy to predict delay times from azimuthal surface wave anisotropy, deeper sources could further affect shear-wave splitting observations.</p>


Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 1-9
Author(s):  
Marshall Reiter

Abstract Heat flow data and thermochronologic derived paleotemperature gradient data are examined to calculate heat flow ~25 Ma and, at present, for a southern Basin and Range location north of Tucson, Arizona. An increase in the surface heat flow is estimated from ~25 Ma to the present; changing from ~47 to ~83 mW m-2. Steady-state conduction temperature vs. depth profiles provide estimates of lithosphere thicknesses both for the present and for ~25 Ma. Different heat transfer models for present heat flow predict present LAB depth that agrees with seismic studies. From these temperature profiles, lithosphere thinning from ~184 km to ~70 km is suggested during the Neogene. Mantle lithosphere thinning caused by thermal phenomena is likely a fundamental driving force for southern Basin and Range extension. Because the mantle lithosphere has likely thinned much more than the crust, it is shown that additional vertical advection, such as an asthenosphere plume, delaminating part of the mantle lithosphere, convection cells, and rising magmas along conduits, add to the vertical advection component of upper mantle lithosphere extension. Interestingly, values of heat flow 25 Ma, lithosphere thicknesses 25 Ma, and Neogene lithosphere thinning are somewhat similar for the Four Corners area of the Colorado Plateau and the southern Basin and Range, even though Neogene tectonic development was quite different, i.e., no Neogene extension in the Colorado Plateau vs. ~57% in the southern Basin and Range. Neogene lithosphere thinning phenomena are likely different in the two regions.


Island Arc ◽  
2000 ◽  
Vol 9 (4) ◽  
pp. 611-626 ◽  
Author(s):  
Shigeyuki Suzuki ◽  
Shizuo Takemura ◽  
Graciano P. Yumul ◽  
Sevillo D. David ◽  
Daniel K. Asiedu

Author(s):  
C. Barry Osmond ◽  
George M. Hidy ◽  
Louis F. Pitelka

Sign in / Sign up

Export Citation Format

Share Document