CENOZOIC PALEODRAINAGE EVOLUTION IN THE SOUTHERN SIERRA NEVADA/TEHACHAPI MTNS., CALIFORNIA AND PROVENANCE OF OIL AND GROUNDWATER RESERVOIRS IN THE SOUTHEASTERN SAN JOAQUIN BASIN INFERRED FROM NON-MARINE CONGLOMERATES AND RELICT STREAM CHANNELS 

2016 ◽  
Author(s):  
D.E. Miller ◽  
◽  
Tony Gallagher ◽  
Carlos Montejo ◽  
Cindy Rodriguez ◽  
...  
Geosphere ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 1164-1205
Author(s):  
Jason Saleeby ◽  
Zorka Saleeby

AbstractThis paper presents a new synthesis for the late Cenozoic tectonic, paleogeographic, and geomorphologic evolution of the southern Sierra Nevada and adjacent eastern San Joaquin Basin. The southern Sierra Nevada and San Joaquin Basin contrast sharply, with the former constituting high-relief basement exposures and the latter constituting a Neogene marine basin with superposed low-relief uplifts actively forming along its margins. Nevertheless, we show that Neogene basinal conditions extended continuously eastward across much of the southern Sierra Nevada, and that during late Neogene–Quaternary time, the intra-Sierran basinal deposits were uplifted and fluvially reworked into the San Joaquin Basin. Early Neogene normal-sense growth faulting was widespread and instrumental in forming sediment accommodation spaces across the entire basinal system. Upon erosion of the intra-Sierran basinal deposits, structural relief that formed on the basement surface by the growth faults emerged as topographic relief. Such “weathered out” fossil fault scarps control much of the modern southern Sierra landscape. This Neogene high-angle fault system followed major Late Cretaceous basement structures that penetrated the crust and that formed in conjunction with partial loss of the region’s underlying mantle lithosphere. This left the region highly prone to surface faulting, volcanism, and surface uplift and/or subsidence transients during subsequent tectonic regimes. The effects of the early Neogene passage of the Mendocino Triple Junction were amplified as a result of the disrupted state of the region’s basement. This entailed widespread high-angle normal faulting, convecting mantle-sourced volcanism, and epeirogenic transients that were instrumental in sediment dispersal, deposition, and reworking patterns. Subsequent phases of epeirogenic deformation forced additional sediment reworking episodes across the southern Sierra Nevada–eastern San Joaquin Basin region during the late Miocene break-off and west tilt of the Sierra Nevada microplate and the Pliocene–Quaternary loss of the region’s residual mantle lithosphere that was left intact from the Late Cretaceous tectonic regime. These late Cenozoic events have left the high local-relief southern Sierra basement denuded of its Neogene basinal cover and emergent immediately adjacent to the eastern San Joaquin Basin and its eastern marginal uplift zone.


2015 ◽  
Vol 12 (3) ◽  
pp. 2491-2532 ◽  
Author(s):  
E. Stacy ◽  
S. C. Hart ◽  
C. T. Hunsaker ◽  
D. W. Johnson ◽  
A. A. Berhe

Abstract. Soil erosion plays important roles in organic matter (OM) storage and persistence in dynamic landscapes. The biogeochemical implication of soil erosion has been a focus of a growing number of studies over the last two decades. However, most of the available studies are conducted in agricultural systems or grasslands, and hence very little information is available on rate and nature of soil organic matter (SOM) eroded from forested upland ecosystems. In the southern parts of the Sierra Nevada Mountains in California, we determined the rate of carbon (C) and nitrogen (N) eroded from two sets of catchments under different climatic conditions to determine how the amount and distribution of precipitation affects lateral distribution of topsoil and associated SOM. We quantified sediment and SOM exported annually (for water years 2005–2011) from four low-order, snow-dominated catchments, and four low-order catchments that receive a mix of rain, and snow and compared it to soil at three different landform positions from the source slopes to determine if there is selective transport of some soil OM components. We found that the amount of sediment exported varied from 0.4 to 177 kg N ha-1, while export of particulate C was between 0.025 and 4.2 kg C ha-1, compared to export of particulate N that was between 0.001 and 0.04 kg ha-1. Sediment yield and composition showed high interannual variation, with higher C and N concentrations in sediment collected in drier years. In our study catchments, erosion laterally mobilized OM-rich topsoil and litter material, some of which readily enters streams owing to the topography in these catchments that includes steep slopes adjacent to stream channels. Annual lateral sediment mass, C, and N fluxes were positively and strongly correlated with stream flows. Our results suggest that variability in climate, represented by stream discharge, is a primary factor controlling the magnitude of C and N eroded from upland temperature forest catchments.


Author(s):  
Elizabeth Cortés Castillo ◽  
Julián Andrés López Isaza
Keyword(s):  

Author(s):  
Ernesto Hernández-Romero ◽  
Reyna Rojano-Hernández ◽  
Ricardo Mendoza-Robles ◽  
José. I. Cortés- Flores ◽  
Antonio N. Turrent-Fernández

En la Sierra Nevada de Puebla, México, los huertos de durazno (Prunus persica L.) presentan problemas de producción relacionados con alta incidencia de plagas (incluye enfermedades), nutrición deficiente e inadecuado manejo de poda, que acentúan el problema de floración precoz en la mayoría de las variedades mejoradas.


2017 ◽  
Vol 94 (3) ◽  
pp. 37-61
Author(s):  
Douglas R. Littlefield

Some histories of California describe nineteenth-century efforts to reclaim the extensive swamplands and shallow lakes in the southern part of California's San Joaquin Valley – then the largest natural wetlands habitat west of the Mississippi River – as a herculean venture to tame a boggy wilderness and turn the region into an agricultural paradise. Yet an 1850s proposition for draining those marshes and lakes primarily was a scheme to improve the state's transportation. Swampland reclamation was a secondary goal. Transport around the time of statehood in 1850 was severely lacking in California. Only a handful of steamboats plied a few of the state's larger rivers, and compared to the eastern United States, roads and railroads were nearly non-existent. Few of these modes of transportation reached into the isolated San Joaquin Valley. As a result, in 1857 the California legislature granted an exclusive franchise to the Tulare Canal and Land Company (sometimes known as the Montgomery franchise, after two of the firm's founders). The company's purpose was to connect navigable canals from the southern San Joaquin Valley to the San Joaquin River, which entered from the Sierra Nevada about half way up the valley. That stream, in turn, joined with San Francisco Bay, and thus the canals would open the entire San Joaquin Valley to world-wide commerce. In exchange for building the canals, the Montgomery franchise could collect tolls for twenty years and sell half the drained swamplands (the other half was to be sold by the state). Land sales were contingent upon the Montgomery franchise reclaiming the marshes. Wetlands in the mid-nineteenth century were not viewed as they are today as fragile wildlife habitats but instead as impediments to advancing American ideals and homesteads across the continent. Moreover, marshy areas were seen as major health menaces, with the prevailing view being that swampy regions’ air carried infectious diseases.


Sign in / Sign up

Export Citation Format

Share Document