scholarly journals Soil carbon and nitrogen erosion in forested catchments: implications for erosion-induced terrestrial carbon sequestration

2015 ◽  
Vol 12 (3) ◽  
pp. 2491-2532 ◽  
Author(s):  
E. Stacy ◽  
S. C. Hart ◽  
C. T. Hunsaker ◽  
D. W. Johnson ◽  
A. A. Berhe

Abstract. Soil erosion plays important roles in organic matter (OM) storage and persistence in dynamic landscapes. The biogeochemical implication of soil erosion has been a focus of a growing number of studies over the last two decades. However, most of the available studies are conducted in agricultural systems or grasslands, and hence very little information is available on rate and nature of soil organic matter (SOM) eroded from forested upland ecosystems. In the southern parts of the Sierra Nevada Mountains in California, we determined the rate of carbon (C) and nitrogen (N) eroded from two sets of catchments under different climatic conditions to determine how the amount and distribution of precipitation affects lateral distribution of topsoil and associated SOM. We quantified sediment and SOM exported annually (for water years 2005–2011) from four low-order, snow-dominated catchments, and four low-order catchments that receive a mix of rain, and snow and compared it to soil at three different landform positions from the source slopes to determine if there is selective transport of some soil OM components. We found that the amount of sediment exported varied from 0.4 to 177 kg N ha-1, while export of particulate C was between 0.025 and 4.2 kg C ha-1, compared to export of particulate N that was between 0.001 and 0.04 kg ha-1. Sediment yield and composition showed high interannual variation, with higher C and N concentrations in sediment collected in drier years. In our study catchments, erosion laterally mobilized OM-rich topsoil and litter material, some of which readily enters streams owing to the topography in these catchments that includes steep slopes adjacent to stream channels. Annual lateral sediment mass, C, and N fluxes were positively and strongly correlated with stream flows. Our results suggest that variability in climate, represented by stream discharge, is a primary factor controlling the magnitude of C and N eroded from upland temperature forest catchments.

2015 ◽  
Vol 12 (16) ◽  
pp. 4861-4874 ◽  
Author(s):  
E. M. Stacy ◽  
S. C. Hart ◽  
C. T. Hunsaker ◽  
D. W. Johnson ◽  
A. A. Berhe

Abstract. Lateral movement of organic matter (OM) due to erosion is now considered an important flux term in terrestrial carbon (C) and nitrogen (N) budgets, yet most published studies on the role of erosion focus on agricultural or grassland ecosystems. To date, little information is available on the rate and nature of OM eroded from forest ecosystems. We present annual sediment composition and yield, for water years 2005–2011, from eight catchments in the southern part of the Sierra Nevada, California. Sediment was compared to soil at three different landform positions from the source slopes to determine if there is selective transport of organic matter or different mineral particle size classes. Sediment export varied from 0.4 to 177 kg ha−1, while export of C in sediment was between 0.025 and 4.2 kg C ha−1 and export of N in sediment was between 0.001 and 0.04 kg N ha−1. Sediment yield and composition showed high interannual variation. In our study catchments, erosion laterally mobilized OM-rich litter material and topsoil, some of which enters streams owing to the catchment topography where steep slopes border stream channels. Annual lateral sediment export was positively and strongly correlated with stream discharge, while C and N concentrations were both negatively correlated with stream discharge; hence, C : N ratios were not strongly correlated to sediment yield. Our results suggest that stream discharge, more than sediment source, is a primary factor controlling the magnitude of C and N export from upland forest catchments. The OM-rich nature of eroded sediment raises important questions about the fate of the eroded OM. If a large fraction of the soil organic matter (SOM) eroded from forest ecosystems is lost during transport or after deposition, the contribution of forest ecosystems to the erosion-induced C sink is likely to be small (compared to croplands and grasslands).


2016 ◽  
Author(s):  
Samuel N. Araya ◽  
Marilyn L. Fogel ◽  
Asmeret Asefaw Berhe

Abstract. Fire is a major driver of soil organic matter (SOM) dynamics, and contemporary global climate change is changing global fire regimes. We investigated thermal alteration of SOM properties by exposing five different topsoils (0 to 5 cm depth) from the western Sierra Nevada Climosequence to a range of temperatures that are expected during prescribed and wild fires (150, 250, 350, 450, 550 and 650 °C), and determined temperature thresholds for major shifts in SOM properties. With increase in temperature, we found that the concentrations of C and N decreased in a similar pattern among all five soils that varied considerably in their original SOM concentrations and mineralogies. Soils were separated into discrete size classes by dry sieving. The C and N concentrations in the larger aggregate size fractions (2–0.25 mm) decreased with increase in temperature that at 450 °C temperature, the remaining C and N were almost entirely associated with the smaller aggregate size fractions (


SOIL ◽  
2017 ◽  
Vol 3 (1) ◽  
pp. 31-44 ◽  
Author(s):  
Samuel N. Araya ◽  
Marilyn L. Fogel ◽  
Asmeret Asefaw Berhe

Abstract. Fire is a major driver of soil organic matter (SOM) dynamics, and contemporary global climate change is changing global fire regimes. We conducted laboratory heating experiments on soils from five locations across the western Sierra Nevada climosequence to investigate thermal alteration of SOM properties and determine temperature thresholds for major shifts in SOM properties. Topsoils (0 to 5 cm depth) were exposed to a range of temperatures that are expected during prescribed and wild fires (150, 250, 350, 450, 550, and 650 °C). With increase in temperature, we found that the concentrations of carbon (C) and nitrogen (N) decreased in a similar pattern among all five soils that varied considerably in their original SOM concentrations and mineralogies. Soils were separated into discrete size classes by dry sieving. The C and N concentrations in the larger aggregate size fractions (2–0.25 mm) decreased with an increase in temperature, so that at 450 °C the remaining C and N were almost entirely associated with the smaller aggregate size fractions ( <  0.25 mm). We observed a general trend of 13C enrichment with temperature increase. There was also 15N enrichment with temperature increase, followed by 15N depletion when temperature increased beyond 350 °C. For all the measured variables, the largest physical, chemical, elemental, and isotopic changes occurred at the mid-intensity fire temperatures, i.e., 350 and 450 °C. The magnitude of the observed changes in SOM composition and distribution in three aggregate size classes, as well as the temperature thresholds for critical changes in physical and chemical properties of soils (such as specific surface area, pH, cation exchange capacity), suggest that transformation and loss of SOM are the principal responses in heated soils. Findings from this systematic investigation of soil and SOM response to heating are critical for predicting how soils are likely to be affected by future climate and fire regimes.


2021 ◽  
Vol 11 (18) ◽  
pp. 8342
Author(s):  
Valeria Memoli ◽  
Lucia Santorufo ◽  
Giorgia Santini ◽  
Paola Musella ◽  
Rossella Barile ◽  
...  

As they quickly respond to environmental conditions, soil enzymes, involved in nutrient cycles, are considered good indicators of soil quality. The Mediterranean area is a peculiar environment for climatic conditions and for fire frequency. Therefore, the research aimed to evaluate the role of seasonality and fire on enzymatic activities (i.e., hydrolase, dehydrogenase, and β-glucosidase) in soils covered by herbs, black locust, pine, and holm oak. In addition, the main soil abiotic properties that drive the enzymatic activities were also investigated. In order to achieve the aims, surface soils were collected in unburnt and burnt areas and characterized for water and organic matter contents, pH, concentrations of C and N, and available fractions of Al, Ca, Cu, Fe, Mg, Mn, Na, and Pb. The results highlighted that the soil enzymatic activities were mainly affected by seasonality more than by fire; in unburnt soils, their main drivers were nutrient availabilities, whereas, in burnt soils they were pH, water and organic matter contents, C and N concentrations, and both nutrient and metal availabilities. Finally, holm oak, as compared with herbs, pine, and black locust, conferred higher stability to soils that were affected by seasonality and fire.


2000 ◽  
Vol 42 (9) ◽  
pp. 195-201 ◽  
Author(s):  
P. Andreasen ◽  
P. B. Mortensen ◽  
A. Stubsgaard ◽  
B. Langdahl

The stabilisation of a sludge-mineral soil mixture and a method to evaluate the state of stabilisation were investigated. The organic matter and nitrogen content are reduced up to 50% during a stabilisation process of three months under Danish climatic conditions. The stabilisation was shown to be an aerobic process limited by oxygen transport within the mixture. The degree of stabilisation was evaluated by oxygen consumption in a water suspension and the results showed that a stable product was achieved when oxygen consumption was stable and in the level of natural occurring aerobic soils (0.1 mgO2/(g DS*hr). The study thereby demonstrates that a stability of a growth media can be controlled by the oxygen consumption method tested.


2021 ◽  
Vol 10 (5) ◽  
pp. 348
Author(s):  
Zhenbo Du ◽  
Bingbo Gao ◽  
Cong Ou ◽  
Zhenrong Du ◽  
Jianyu Yang ◽  
...  

Black soil is fertile, abundant with organic matter (OM) and is exceptional for farming. The black soil zone in northeast China is the third-largest black soil zone globally and produces a quarter of China’s commodity grain. However, the soil organic matter (SOM) in this zone is declining, and the quality of cultivated land is falling off rapidly due to overexploitation and unsustainable management practices. To help develop an integrated protection strategy for black soil, this study aimed to identify the primary factors contributing to SOM degradation. The geographic detector, which can detect both linear and nonlinear relationships and the interactions based on spatial heterogeneous patterns, was used to quantitatively analyze the natural and anthropogenic factors affecting SOM concentration in northeast China. In descending order, the nine factors affecting SOM are temperature, gross domestic product (GDP), elevation, population, soil type, precipitation, soil erosion, land use, and geomorphology. The influence of all factors is significant, and the interaction of any two factors enhances their impact. The SOM concentration decreases with increased temperature, population, soil erosion, elevation and terrain undulation. SOM rises with increased precipitation, initially decreases with increasing GDP but then increases, and varies by soil type and land use. Conclusions about detailed impacts are presented in this paper. For example, wind erosion has a more significant effect than water erosion, and irrigated land has a lower SOM content than dry land. Based on the study results, protection measures, including conservation tillage, farmland shelterbelts, cross-slope ridges, terraces, and rainfed farming are recommended. The conversion of high-quality farmland to non-farm uses should be prohibited.


2012 ◽  
Vol 42 (11) ◽  
pp. 1953-1964 ◽  
Author(s):  
Irene Fernandez ◽  
Juan Gabriel Álvarez-González ◽  
Beatríz Carrasco ◽  
Ana Daría Ruíz-González ◽  
Ana Cabaneiro

Forest ecosystems can act as C sinks, thus absorbing a high percentage of atmospheric CO2. Appropriate silvicultural regimes can therefore be applied as useful tools in climate change mitigation strategies. The present study analyzed the temporal changes in the effects of thinning on soil organic matter (SOM) dynamics and on soil CO2 emissions in radiata pine ( Pinus radiata D. Don) forests. Soil C effluxes were monitored over a period of 2 years in thinned and unthinned plots. In addition, soil samples from the plots were analyzed by solid-state 13C-NMR to determine the post-thinning SOM composition and fresh soil samples were incubated under laboratory conditions to determine their biodegradability. The results indicate that the potential soil C mineralization largely depends on the proportion of alkyl-C and N-alkyl-C functional groups in the SOM and on the microbial accessibility of the recalcitrant organic pool. Soil CO2 effluxes varied widely between seasons and increased exponentially with soil heating. Thinning led to decreased soil respiration and attenuation of the seasonal fluctuations. These effects were observed for up to 20 months after thinning, although they disappeared thereafter. Thus, moderate thinning caused enduring changes to the SOM composition and appeared to have temporary effects on the C storage capacity of forest soils, which is a critical aspect under the current climatic change scenario.


1986 ◽  
Vol 66 (2) ◽  
pp. 273-285 ◽  
Author(s):  
J. F. DORMAAR ◽  
C. W. LINDWALL ◽  
G. C. KOZUB

A field was artificially eroded by levelling in 1957 and then continuously cropped to barley for 7 yr. Subsequently, a wheat-fallow experiment was conducted from 1965 to 1979 to determine the effects of four fertilizer treatments and green manure (yellow sweet clover) on restoring the productivity to soil that had been "eroded" to various depths. After 22 yr and 14 crops, the productivity of the land from which soil was removed has been improved but not fully restored. Although green manuring with yellow sweet clover improved soil structure, wheat yields were not improved because of competition for soil moisture and poorer in-crop weed control in this part of the rotation. The addition of 45 kg N plus 90 kg P2O5 per hectare in each crop year to sites from which 8–10, 10–20, or 46 + cm of soil had been removed resulted in yield increases of 18, 46, and 70%, respectively, over the unfertilized check of each treatment; the average yields were 104, 91, and 70%, respectively, of the undisturbed, unfertilized (check) treatment. On "erosion" treatments where only 8–10 cm of soil were removed, 45 kg N plus 22 kg P2O5 per hectare were sufficient to restore the productivity. Precipitation apparently had a greater effect than fertilizer application on wheat yields. The loss of organic matter and associated soil structure characteristics seemed to be critical factors contributing to yield losses associated with soil erosion. These results show that it is more practical to use management practices that prevent soil erosion than to adopt the practices required to restore eroded soil. Key words: Soil erosion, topsoil loss, water-stable aggregates, soil organic matter, green manure, precipitation


2021 ◽  
Author(s):  
Qiufen Zhang ◽  
Xizhi Lv ◽  
Rongxin Chen ◽  
Yongxin Ni ◽  
Li Ma

&lt;p&gt;The slope runoff caused by rainstorm is the main cause of serious soil and water loss in the loess hilly area, the grassland vegetation has a good inhibitory effect on the slope runoff, it is of great significance to reveal the role of grassland vegetation in the process of runoff generation and control mechanism for controlling soil erosion in this area. In this study, typical grassland slopes in hilly and gully regions of the loess plateau were taken as research objects. Through artificial rainfall in the field, the response rules of slope rainfall-runoff process to different grass coverage were explored. The results show that: (1) The time for the slope flow to stabilize is prolonged with the increase of vegetation coverage, and shortened with the increase of rainfall intensity; (2) At 60 mm&amp;#183;h &lt;sup&gt;&amp;#8722;1&lt;/sup&gt; rainfall intensity, the threshold of grassland vegetation coverage is 75.38%; at 90 mm&amp;#183;h&lt;sup&gt; &amp;#8722;1&lt;/sup&gt; rainfall intensity, the threshold of grassland vegetation coverage is 90.54%; at 120 mm&amp;#183;h &lt;sup&gt;&amp;#8722;1&lt;/sup&gt; rainfall intensity, the impact of grassland vegetation coverage on runoff is not significant; (3) the Reynolds number and Froude number of slope flow are 40.07&amp;#8210;695.22 and 0.33&amp;#8210;1.56 respectively, the drag coefficient is 1.42&amp;#8210;43.53. Under conditions of heavy rainfall, the ability of grassland to regulate slope runoff is limited. If only turf protection is considered, about 90% of grassland coverage can effectively cope with soil erosion caused by climatic conditions in loess hilly and gully regions. Therefore, in loess hilly areas where heavy rains frequently occur, grassland's protective effect on soil erosion is obviously insufficient, and investment in vegetation measures for trees and shrubs should be strengthened.&lt;/p&gt;


2021 ◽  
Author(s):  
Moritz Mohrlok ◽  
Victoria Martin ◽  
Alberto Canarini ◽  
Wolfgang Wanek ◽  
Michael Bahn ◽  
...  

&lt;p&gt;Soil organic matter (SOM) is composed of many pools with different properties (e.g. turnover times) which are generally used in biogeochemical models to predict carbon (C) dynamics. Physical fractionation methods are applied to isolate soil fractions that correspond to these pools. This allows the characterisation of chemical composition and C content of these fractions. There is still a lack of knowledge on how these individual fractions are affected by different climate change drivers, and therefore the fate of SOM remains elusive. We sampled soils from a multifactorial climate change experiment in a managed grassland in Austria four years after starting the experiment to investigate the response of SOM in physical soil fractions to temperature (eT: ambient and elevated by +3&amp;#176;C), atmospheric CO&lt;sub&gt;2&lt;/sub&gt;-concentration (eCO&lt;sub&gt;2&lt;/sub&gt;: ambient and elevated by +300 ppm) and to a future climate treatment (eT x eCO&lt;sub&gt;2&lt;/sub&gt;: +3&amp;#176;C and + 300 ppm). A combination of slaking and wet sieving was used to obtain three size classes: macro-aggregates (maA, &gt; 250 &amp;#181;m), micro-aggregates (miA, 63 &amp;#181;m &amp;#8211; 250 &amp;#181;m) and free silt &amp; clay (sc, &lt; 63 &amp;#181;m). In both maA and miA, four different physical OM fractions were then isolated by density fractionation (using sodium polytungstate of &amp;#961; = 1.6 g*cm&lt;sup&gt;-3&lt;/sup&gt;, ultrasonication and sieving): Free POM (fPOM), intra-aggregate POM (iPOM), silt &amp; clay associated OM (SCaOM) and sand-associated OM (SaOM). We measured C and N contents and isotopic composition by EA-IRMS in all fractions and size classes and used a Pyrolysis-GC/MS approach to assess their chemical composition. For eCO&lt;sub&gt;2&lt;/sub&gt; and eT x eCO&lt;sub&gt;2 &lt;/sub&gt;plots, an isotope mixing-model was used to calculate the proportion of recent C derived from the elevated CO&lt;sub&gt;2 &lt;/sub&gt;treatment. Total soil C and N did not significantly change with treatments.&amp;#160; eCO&lt;sub&gt;2&lt;/sub&gt; decreased the relative proportion of maA-mineral-associated C and increased C in fPOM and iPOM. About 20% of bulk soil C was represented by the recent C derived from the CO&lt;sub&gt;2&lt;/sub&gt; fumigation treatment. This significantly differed between size classes and density fractions (p &lt; 0.001), which indicates inherent differences in OM age and turnover. Warming reduced the amount of new C incorporated into size classes. We found that each size class and fraction possessed a unique chemical fingerprint, but this was not significantly changed by the treatments. Overall, our results show that while climate change effects on total soil C were not significant after 4 years, soil fractions showed specific effects. Chemical composition differed significantly between size classes and fractions but was unaffected by simulated climate change. This highlights the importance to separate SOM into differing pools, while including changes to the molecular composition might not be necessary for improving model predictions.&amp;#160;&amp;#160;&amp;#160;&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document