TEXTURAL AND COMPOSITIONAL ANALYSIS OF TERRESTRIAL BASALTIC SEDIMENTS: TOWARD A BETTER UNDERSTANDING OF MARTIAN SEDIMENTS AND SEDIMENTARY ROCKS

2016 ◽  
Author(s):  
Christopher M. Fedo ◽  
◽  
Mary A. Eibl ◽  
Ian O. McGlynn
Author(s):  
Thomas R. McKee ◽  
Peter R. Buseck

Sediments commonly contain organic material which appears as refractory carbonaceous material in metamorphosed sedimentary rocks. Grew and others have shown that relative carbon content, crystallite size, X-ray crystallinity and development of well-ordered graphite crystal structure of the carbonaceous material increases with increasing metamorphic grade. The graphitization process is irreversible and appears to be continous from the amorphous to the completely graphitized stage. The most dramatic chemical and crystallographic changes take place within the chlorite metamorphic zone.The detailed X-ray investigation of crystallite size and crystalline ordering is complex and can best be investigated by other means such as high resolution transmission electron microscopy (HRTEM). The natural graphitization series is similar to that for heat-treated commercial carbon blacks, which have been successfully studied by HRTEM (Ban and others).


Author(s):  
A. Olsen ◽  
J.C.H. Spence ◽  
P. Petroff

Since the point resolution of the JEOL 200CX electron microscope is up = 2.6Å it is not possible to obtain a true structure image of any of the III-V or elemental semiconductors with this machine. Since the information resolution limit set by electronic instability (1) u0 = (2/πλΔ)½ = 1.4Å for Δ = 50Å, it is however possible to obtain, by choice of focus and thickness, clear lattice images both resembling (see figure 2(b)), and not resembling, the true crystal structure (see (2) for an example of a Fourier image which is structurally incorrect). The crucial difficulty in using the information between Up and u0 is the fractional accuracy with which Af and Cs must be determined, and these accuracies Δff/4Δf = (2λu2Δf)-1 and ΔCS/CS = (λ3u4Cs)-1 (for a π/4 phase change, Δff the Fourier image period) are strongly dependent on spatial frequency u. Note that ΔCs(up)/Cs ≈ 10%, independent of CS and λ. Note also that the number n of identical high contrast spurious Fourier images within the depth of field Δz = (αu)-1 (α beam divergence) decreases with increasing high voltage, since n = 2Δz/Δff = θ/α = λu/α (θ the scattering angle). Thus image matching becomes easier in semiconductors at higher voltage because there are fewer high contrast identical images in any focal series.


Author(s):  
John B. Vander Sande ◽  
Thomas F. Kelly ◽  
Douglas Imeson

In the scanning transmission electron microscope (STEM) a fine probe of electrons is scanned across the thin specimen, or the probe is stationarily placed on a volume of interest, and various products of the electron-specimen interaction are then collected and used for image formation or microanalysis. The microanalysis modes usually employed in STEM include, but are not restricted to, energy dispersive X-ray analysis, electron energy loss spectroscopy, and microdiffraction.


1989 ◽  
Vol 4 ◽  
pp. 244-248 ◽  
Author(s):  
Donald L. Wolberg

The minerals pyrite and marcasite (broadly termed pyritic minerals) are iron sulfides that are common if not ubiquitous in sedimentary rocks, especially in association with organic materials (Berner, 1970). In most marine sedimentary associations, pyrite and marcasite are associated with organic sediments rich in dissolved sulfate and iron minerals. Because of the rapid consumption of sulfate in freshwater environments, however, pyrite formation is more restricted in nonmarine sediments (Berner, 1983). The origin of the sulfur in nonmarine environments must lie within pre-existing rocks or volcanic detritus; a relatively small, but significant contribution may derive from plant and animal decomposition products.


2015 ◽  
Vol 7 (1) ◽  
pp. 271-276
Author(s):  
MA Zubair ◽  
MA Haque ◽  
MM Sultana ◽  
S Akter

16th February 2015. Due to a number of missing tables and figures, this article (DOI: http://dx.doi.org/10.3329/jesnr.v7i1.22182) was withdrawn from Vol.7(1) and has been republished with corrections in Vol.7(2) pp.185-190 (DOI: http://dx.doi.org/10.3329/jesnr.v7i2.22230). The Editor  


2006 ◽  
Vol 55 (3) ◽  
pp. 113-127 ◽  
Author(s):  
Dov Bahat ◽  
Avinoam Rabinovich ◽  
Vladimir Frid ◽  
Peter Bankwitz
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document