High Spatial Resolution Compositional Analysis at Interfaces

Author(s):  
John B. Vander Sande ◽  
Thomas F. Kelly ◽  
Douglas Imeson

In the scanning transmission electron microscope (STEM) a fine probe of electrons is scanned across the thin specimen, or the probe is stationarily placed on a volume of interest, and various products of the electron-specimen interaction are then collected and used for image formation or microanalysis. The microanalysis modes usually employed in STEM include, but are not restricted to, energy dispersive X-ray analysis, electron energy loss spectroscopy, and microdiffraction.

Nanoscale ◽  
2015 ◽  
Vol 7 (5) ◽  
pp. 1534-1548 ◽  
Author(s):  
Angela E. Goode ◽  
Alexandra E. Porter ◽  
Mary P. Ryan ◽  
David W. McComb

Benefits and challenges of correlative spectroscopy: electron energy-loss spectroscopy in the scanning transmission electron microscope (STEM-EELS) and X-ray absorption spectroscopy in the scanning transmission X-ray microscope (STXM-XAS).


Author(s):  
G. L'Espérance

The attachment of a Si(Li) energy dispersive X-ray (EDX) detector to a (scanning) transmission electron microscope ((S)TEM) is widely used to carry out quantitative determinations of elemental composition of a localized region of a thin specimen. Although the principles of the technique first proposed by Cliff and Lorimer have been established for some time, there are still a large number of sources of errors. In addition, EDX analyses have been generally restricted until recently to elements with an atomic number (Z) larger than that of sodium (Z > 10) so that electron energy loss spectroscopy (EELS) was the preferred technique for the detection of light elements in an AEM. The relatively recent advent of ultra-thin window (UTW) detectors has offered an alternative (and often complementary) technique to EELS for the analysis of light elements with additional difficulties in the detection and quantification. This paper presents some results of investigations made to improve the quantification of EDX data. Particular attention is given to the detection and quantification of data from light elements on a routine and reproducible basis.


2004 ◽  
Vol 818 ◽  
Author(s):  
Shelley R. Gilliss ◽  
James Bentley ◽  
C. Barry

AbstractSurfaces of ceria (CeO2) particles have been studied by electron energy-loss spectroscopy in a field-emission gun scanning transmission electron microscope. All the ceria particles analyzed contained Ce3+ at the surface. Rare-earth impurities such as La were enriched at the surface and were observed for particles ranging from tens to hundreds of nanometers in size. The oxidation state of the cerium ion is measured from the Ce M5/M4white-line intensity ratio.


2003 ◽  
Vol 802 ◽  
Author(s):  
K. T. Moore ◽  
M. A. Wall ◽  
A. J. Schwartz ◽  
B. W. Chung ◽  
J. G. Tobin ◽  
...  

ABSTRACTHere, we demonstrate the power of electron energy-loss spectroscopy (EELS) in a transmission electron microscope (TEM) to investigate the electronic structure plutonium. Using EELS, TEM, and synchrotron-radiation-based X-ray absorption spectroscopy (XAS), we provide the first experimental evidence that Russell-Saunders (LS) coupling fails for the 5f states of Pu. These results support the assumption that only the use of jj or intermediate coupling is appropriate for the 5f states of Pu. EELS experiments were performed in a TEM and are coupled with image and diffraction data, therefore, the measurements are completely phase specific. It is shown that EELS in a TEM may be used to circumvent the difficulty of producing single-phase or single-crystal samples due to its high spatial resolution.


2012 ◽  
Vol 18 (S2) ◽  
pp. 974-975 ◽  
Author(s):  
M. Watanabe ◽  
A. Yasuhara ◽  
E. Okunishi

Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 – August 2, 2012.


Sign in / Sign up

Export Citation Format

Share Document