CAMBRIAN GRANULITE-FACIES METAMORPHISM OF THE LARSEMANN HILLS, PRYDZ BAY, ANTARCTICA: USING THERMODYNAMIC MODELING TO INFORM MONAZITE PETROCHRONOLOGY

2017 ◽  
Author(s):  
Jesse Walters ◽  
◽  
Steven Spreitzer ◽  
Edward S. Grew ◽  
M.L. Williams ◽  
...  
1995 ◽  
Vol 59 (395) ◽  
pp. 327-339 ◽  
Author(s):  
C. J. Carson ◽  
M. Hand ◽  
P. H. G. M. Dirks

AbstractPetrological and mineral chemical data are presented for two new occurrences of co-existing borosilicate minerals in the Larsemann Hills, East Antarctica. The assemblages contain kornerupine and the rare borosilicate, grandidierite (Mg,Fe)A13BSiO9. Two distinct associations occur: (1) At McCarthy Point, 1–10 mm thick tourmaline-kornerupine-grandidierite layers are hosted within quartzofeldspathic gneiss; and (2) Seal Cove, where coexisting kornerupine and grandidierite occur within coarse-grained, metamorphic segregations with Mg-rich cores of cordierite-garnet-spinel-biotite-ilmenite and variably developed plagioclase halos. The segregations are hosted within biotite-bearing, plagio-feldspathic gneiss. Textural relationships from these localities indicate the stability of co-existing kornerupine and grandidierite.The grandidierite- and kornerupine-bearing segregations from Seal Cove largely postdate structures developed during a crustal thickening event (D2) which was coeval with peak metamorphism. At McCarthy Point, grandidierite, kornerupine and late-tourmaline growth predates, or is synchronous, with F3 fold structures developed during a extensive granulite grade, normal shearing event (D3) which occurred prior to, and synchronous with, near-isothermal decompression. Average pressure calculations on assemblages that coexist with the borosilicates at Seal Cove, indicate the prevailing conditions were 5.2–5.5 kbar at ∼ 750°C for formation of the grandidierite-kornerupine assemblage.


Author(s):  
Steven K. Spreitzer ◽  
Jesse B. Walters ◽  
Alicia Cruz‐Uribe ◽  
Michael L. Williams ◽  
Martin G. Yates ◽  
...  

Early cratonal development of the Arabian Shield of southwestern Saudi Arabia began with the deposition of calcic to calc-alkalic, basaltic to dacitic volcanic rocks, and immature sedimentary rocks that subsequently were moderately deformed, metamorphosed, and intruded about 960 Ma ago by dioritic batholiths of mantle derivation (87Sr/86Sr = 0.7029). A thick sequence of calc-alkalic andesitic to rhyodacitic volcanic rocks and volcanoclastic wackes was deposited unconformably on this neocraton. Regional greenschistfacies metamorphism, intensive deformation along north-trending structures, and intrusion of mantle-derived (87Sr/86Sr = 0.7028) dioritic to granodioritic batholiths occurred about 800 Ma. Granodiorite was emplaced as injection gneiss about 785 Ma (87Sr/86Sr = 0.7028- 0.7035) in localized areas of gneiss doming and amphibolite to granulite facies metamorphism. Deposition of clastic and volcanic rocks overlapped in time and followed orogeny at 785 Ma. These deposits, together with the older rocks, were deformed, metamorphosed to greenschist facies, and intruded by calc-alkalic plutons (87Sr/86Sr = 0.7035) between 600 and 650 Ma. Late cratonal development between 570 and 550 Ma involved moderate pulses of volcanism, deformation, metamorphism to greenschist facies, and intrusion of quartz monzonite and granite. Cratonization appears to have evolved in an intraoceanic, island-arc environment of comagmatic volcanism and intrusion.


1982 ◽  
Vol 110 ◽  
pp. 55-57
Author(s):  
A.A Garde ◽  
V.R McGregor

Previous geological work on the 1:100000 map sheet 64 V.l N (fig. 15) includes published maps of smaller areas by Berthelsen (1960, 1962) and Lauerma (1964), mapping by Kryolitselskabet Øresund A/S (Bridgwater et al., 1976) and mapping by GGU geologists for the 1:500000 map sheet Frederikshåb Isblink - Søndre Strømfjord (Allaart et al., 1977, 1978). The Amltsoq and Niik gneisses and Malene supracrustal rock units south and east of Godthåbsfjord have not so far been correlated with rocks in the Fiskefjord area. Godthåbsfjord separates the granulite facies gneisses in Nordlandet from amphibolite facies Nûk gneisses on Sadelø and Bjørneøen; the granulite facies metamorphism occurred at about 2850 m.y. (Black et al., 1973), while no published isotopic age determinations from the Fiskefjord area itself are available.


Sign in / Sign up

Export Citation Format

Share Document