CONTROLS ON LARGE SCALE ARCHITECTURE AND DISTRIBUTION OF CARBONATE FACIES IN RAMP SETTINGS, SMACKOVER FORMATION, GULF OF MEXICO

2018 ◽  
Author(s):  
Souvik Bhattacharjee ◽  
◽  
Marcello Minzoni ◽  
Bradford E. Prather
Shore & Beach ◽  
2020 ◽  
pp. 65-71
Author(s):  
Whitney Thompson ◽  
Christopher Paul ◽  
John Darnall

Coastal Louisiana received significant funds tied to BP penalties as a result of the Deepwater Horizon incident. As it is widely considered that the State of Louisiana sustained most of the damage due to this incident, there has been a firm push to waste no time in implementing habitat restoration projects. Sustaining the land on the coast of Louisiana is vital to our nation’s economy, as several of the nation’s largest ports are located on the Gulf coast in Louisiana. In addition, the ecosystems making up the Louisiana coast are important to sustain some of the largest and most valuable fisheries in the nation. Funded by BP Phase 3 Early Restoration, the goals of the Natural Resource Damage Assessment (NRDA) Outer Coast Restoration Project are to restore beach, dune, and marsh habitats to help compensate spill-related injuries to habitats and species, specifically brown pelicans, terns, skimmers, and gulls. Four island components in Louisiana were funded under this project; Shell Island Barrier Restoration, Chenier Ronquille Barrier Island Restoration, Caillou Lake Headlands Barrier Island Restoration, and North Breton Island Restoration (https://www. gulfspillrestoration.noaa.gov/louisiana-outer-coast-restoration, NOAA 2018). Shell Island and Chenier Ronquille are critical pieces of barrier shoreline within the Barataria Basin in Plaquemines Parish, Louisiana. These large-scale restoration projects were completed in the years following the Deepwater Horizon incident, creating new habitat and reinforcing Louisiana’s Gulf of Mexico shoreline. The Louisiana Coastal Protection and Restoration Authority (CPRA) finished construction of the Shell Island NRDA Restoration Project in 2017, which restored two barrier islands in Plaquemines Parish utilizing sand hydraulically dredged from the Mississippi River and pumped via pipeline over 20 miles over levees and through towns, marinas, and marshes to the coastline. The National Marine Fisheries Service (NMFS) also completed the Plaquemines Parish barrier island restoration at Chenier Ronquille in 2017 utilizing nearshore Gulf of Mexico sediment, restoring wetland, coastal, and nearshore habitat in the Barataria Basin. A design and construction overview is provided herein.


Oceanography ◽  
2021 ◽  
Vol 34 (1) ◽  
pp. 58-75
Author(s):  
Michel Boufadel ◽  
◽  
Annalisa Bracco ◽  
Eric Chassignet ◽  
Shuyi Chen ◽  
...  

Physical transport processes such as the circulation and mixing of waters largely determine the spatial distribution of materials in the ocean. They also establish the physical environment within which biogeochemical and other processes transform materials, including naturally occurring nutrients and human-made contaminants that may sustain or harm the region’s living resources. Thus, understanding and modeling the transport and distribution of materials provides a crucial substrate for determining the effects of biological, geological, and chemical processes. The wide range of scales in which these physical processes operate includes microscale droplets and bubbles; small-scale turbulence in buoyant plumes and the near-surface “mixed” layer; submesoscale fronts, convergent and divergent flows, and small eddies; larger mesoscale quasi-geostrophic eddies; and the overall large-scale circulation of the Gulf of Mexico and its interaction with the Atlantic Ocean and the Caribbean Sea; along with air-sea interaction on longer timescales. The circulation and mixing processes that operate near the Gulf of Mexico coasts, where most human activities occur, are strongly affected by wind- and river-induced currents and are further modified by the area’s complex topography. Gulf of Mexico physical processes are also characterized by strong linkages between coastal/shelf and deeper offshore waters that determine connectivity to the basin’s interior. This physical connectivity influences the transport of materials among different coastal areas within the Gulf of Mexico and can extend to adjacent basins. Major advances enabled by the Gulf of Mexico Research Initiative in the observation, understanding, and modeling of all of these aspects of the Gulf’s physical environment are summarized in this article, and key priorities for future work are also identified.


2019 ◽  
Author(s):  
M. Ortin ◽  
M. Salgadoe ◽  
F. Fenoglio ◽  
A. Raj ◽  
M. Sanchez ◽  
...  

2020 ◽  
Vol 50 (4) ◽  
pp. 1045-1064 ◽  
Author(s):  
Steven L. Morey ◽  
Ganesh Gopalakrishnan ◽  
Enric Pallás Sanz ◽  
Joao Marcos Azevedo Correia De Souza ◽  
Kathleen Donohue ◽  
...  

AbstractThree simulations of the circulation in the Gulf of Mexico (the “Gulf”) using different numerical general circulation models are compared with results of recent large-scale observational campaigns conducted throughout the deep (>1500 m) Gulf. Analyses of these observations have provided new understanding of large-scale mean circulation features and variability throughout the deep Gulf. Important features include cyclonic flow along the continental slope, deep cyclonic circulation in the western Gulf, a counterrotating pair of cells under the Loop Current region, and a cyclonic cell to the south of this pair. These dominant circulation features are represented in each of the ocean model simulations, although with some obvious differences. A striking difference between all the models and the observations is that the simulated deep eddy kinetic energy under the Loop Current region is generally less than one-half of that computed from observations. A multidecadal integration of one of these numerical simulations is used to evaluate the uncertainty of estimates of velocity statistics in the deep Gulf computed from limited-length (4 years) observational or model records. This analysis shows that the main deep circulation features identified from the observational studies appear to be robust and are not substantially impacted by variability on time scales longer than the observational records. Differences in strengths and structures of the circulation features are identified, however, and quantified through standard error analysis of the statistical estimates using the model solutions.


2020 ◽  
Author(s):  
Xinyue Wang ◽  
William Randel ◽  
Yutian Wu

<p>We study fast transport of air from the surface into the North American upper troposphere-lower stratosphere (UTLS) during northern summer with a large ensemble of Boundary Impulse Response (BIR) idealized tracers. Specifically, we implement 90 pulse tracers at the Northern Hemisphere surface and release them during July and August months in the fully coupled Whole Atmosphere Community Climate Model (WACCM) version 5. We focus on the most efficient transport cases above southern U.S. (10°-40°N, 60°-140°W) at 100 hPa with modal ages fall below 10th percentile. We examine transport-related terms, including resolved dynamics computed inside model transport scheme and parameterized processes (vertical diffusion and convective parameterization), to pin down the dominant dynamical mechanism. Our results show during the fastest transport, air parcels enter ULTS directly above the Gulf of Mexico. The budget analysis indicates that strong deep convection over the Gulf of Mexico fast uplift the tracer into 200 hPa, and then is vertically advected into 100 hPa and circulated by the enhanced large-scale anticyclone. </p>


2003 ◽  
Author(s):  
Denes Vigh ◽  
E. William Starr ◽  
Jock Drummond ◽  
Danny Addis ◽  
David Walraven

1991 ◽  
Vol 102 (1-4) ◽  
pp. 215-238 ◽  
Author(s):  
Christopher G.St.C Kendall ◽  
Bruce Bowen ◽  
Abdulrahman Alsharhan ◽  
Dae-Kyo Cheong ◽  
David Stoudt

2014 ◽  
Vol 2 (4) ◽  
pp. SM39-SM55 ◽  
Author(s):  
Robin S. Pilcher ◽  
Ryan T. Murphy ◽  
Jessica McDonough Ciosek

The northeastern Gulf of Mexico is dominated by the 900–1800-m Florida Escarpment, which forms the bathymetric expression of the Cretaceous carbonate shelf edge. Outboard of the escarpment lies a region of salt-detached raft blocks, which are closely analogous to type examples in the Kwanza Basin, Angola, in terms of structural style, scale, and amount of extension. We undertook the first detailed structural interpretation of an emerging petroleum exploration province. The rafts detached and translated basinward by gravity gliding on the autochthonous Louann salt in the late Jurassic to early Cretaceous. The Upper Jurassic source rock (lime mudstones) of the Smackover Formation and eolian sandstone reservoir intervals of the Norphlet Formation are structurally segmented and entirely contained within the raft blocks. The rafts are separated by salt ridges and/or extensional fault gaps containing expanded uppermost Jurassic and lower Cretaceous strata of the Cotton Valley Group. The main episode of rafting occurred after deposition of the Smackover and Haynesville Formations and broke the Jurassic carbonate platform into raft blocks 2–40 km in length, which were then translated 25–40 km basinward from their original position. Map-view restoration of the raft blocks suggested a minimum extension of 100%, with basinward transport directions indicating a radial divergence of rafts. In the north of the study area, the transport direction was westerly, whereas in the south, translation was southerly. This pattern, which mimics the Florida Escarpment, suggested that the morphology of the Jurassic slope controlled the style of gravitational tectonics and the location of subsequent Cretaceous carbonate buildups. As with other linked systems on mobile substrates, the observed extension and translation must be balanced by downdip contraction. In the case of the northeastern Gulf of Mexico, the contraction is largely cryptic, being accommodated by salt evacuation, compression of salt walls/stocks, and possibly open-toed canopy advance.


Geophysics ◽  
2011 ◽  
Vol 76 (1) ◽  
pp. F77-F87 ◽  
Author(s):  
Michael S. Zhdanov ◽  
Le Wan ◽  
Alexander Gribenko ◽  
Martin Čuma ◽  
Kerry Key ◽  
...  

Three-dimensional magnetotelluric (MT) inversion is an emerging technique for offshore hydrocarbon exploration. We have developed a new approach to the 3D inversion of MT data, based on the integral equation method. The Tikhonov regularization and physical constraint have been used to obtain a stable and reasonable solution of the inverse problem. The method is implemented in a fully parallel computer code. We have applied the developed method and software for the inversion of marine MT data collected by the Scripps Institution of Oceanography (SIO) in the Gemini prospect, Gulf of Mexico. The inversion domain was discretized into 1.6 million cells. It took nine hours to complete 51 iterations on the 832-processor cluster with a final misfit between the observed and predicted data of 6.2%. The inversion results reveal a resistive salt structure, which is confirmed by a comparison with the seismic data. These inversion results demonstrate that resistive geoelectrical structures like salt domes can be mapped with reasonable accuracy using the 3D inversion of marine MT data.


Sign in / Sign up

Export Citation Format

Share Document